TelcoBridges

Your System

TB640 User's guide

Document number
9000-00002-2H

January 2008

Copyright © 2002-2008 by TelcoBridges inc.

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from TelcoBridges inc.

TB640 User's guide CONFIDENTIAL 9000-00002-2H

This page in intentionally left blank

Page 2 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

Table of contents

INTRODUCGTION ..uuioiiruiirnisensuicssnssesssesssssssssssssssssess 13
1 OVERVIEW..uiiniininnnineisesssisssassssssss 14
2 MESSAGES.....ciitiieininniceisesssissesssesssissssssesssissssssssssssssssstss 15
2.1 ASYNCATONOUS MESSAZINE ...eeeuvvieriiieeriieeeiieeriieenteeesieeesaeeessreeessreeessseeessseesssseesnsseessseeenns 15
2.1.1 Why asynchronous meSSagINg?cceeueeiuieriieiuienieeieenteeieesieesteesaeeeseeseeeseesaeeens 15
2.1.2 Zero loss of reSponses and EVENTS..........ccueeruieriieiiieriieiie e eiee e eree e ereesereeeeeeene e 16
2.2 SYNChIONOUS MESSAZING......cveiuiiriiiiiiiieiieeti ettt sttt st 16
2.2.1 Dangers of Synchronous meSSAZING...........ceevvieeriiieeriieeriieerieeereeeeireesreeesaeeesseeennneas 16
23 FAIEETS .ottt ettt at e et esat e et e e neesabeenaeeeneeenee 16
20 T8 B 24 o § 1 L 1 L) OSSP 17
2.3.2 IMPLICIE FIIEETS ..eeeneieiiieiie ettt et st be e st e e ens 18
2.4 Code example #1: Create an explicit message filter to retrieve event messages from all
ACCESSIDIC AAAPTETS ..cueeiiieiieeit ettt ettt e et e bt e et e st e et e e bt e eabe e bt e enbe e teeeateenneeenee 18
2.5 Code example #2: Create an explicit message filter to retrieve response messages from a
SPECTIIC AAAPLET ...ttt ettt e et e e et e e bt e e abe e bt e enbe e teeenteenneeenee 19
2.6 Code example #3: Send request message to attach specific adapter (explicit filtering
100111 1016) RSOOSR SRR SRUUPSRRUPRR 20
2.7 Code example #3: Send request message to attach specific adapter (implicit filtering
100111 1016) OO UURUPRUUUPSRRUPRR 21
2.8 Code example #4: ReCeiVe reSPONSE MESSAZEcecvverrvrerreerreerrreereenieeereesseeeseesseeeseessns 22
3 HOST LIBRARIES ...cuuioiiintiiensinsnisenssisssisesssissssssessssssssssess 25
3.1 Linking with the HOSELIDScceiiiiiiiiiiiiciiecie e 25
3.2 TBX HOStLIb Debug API ..ottt 25
4 INITIALIZATION .ucoviirnsinserssessansssssnssasssssssssssssssssassasssssss 26

4.1 Code example #5: Initialize the library and attach specific adapter using the implicit filter
26

4.2 Code example #6: Un-initialize the library and detach specific adapter using the implicit

filter 30

5 LINE INTERFACES / SERVICES......ccoitnniiniinninnninssensssnsssasssss 33
5.1 LINe INEETTACES ..ot e 33
5.1.1 Allocate a Line INterface.......c.cccouiiiiiiiiiiieccieeeeeee e e e 36
5.1.2 Free @ Line INtEITACE ...cccouviiiiiieiiiieciee ettt et e e e e 39
5.2 LINE SOIVICES. . utiiiiiieiiiieeeiee ettt ettt e et e e et e e e tee e e teeesaseeeabeeesssaessseesnsseesnsseesnsaeanns 41
5.2.1 AllOCAE @ lINE SEIVICEccuvieiieeuiieiieeiieeitieetieesteeeeteeteesteebeessseesaessseesseessseenseessseesseensns 42
5.2.2 FIE€ @ lINE SEIVICE ..eecuviiiiiiieieiieeiiieeiteeeite e et e e et e e e teeesaseeestbaeessseessseeensseesnsaeesnseeennseeas 45
53 SONET and SDH........oiiiiiiiiiiiieeeee ettt ettt ettt ettt e s veesaeesbaeaeessseennas 47
5.3.1 Mapping of payload within an SDH or SONET framingccccceceeverienennenecnennne. 47
5.3.2 Automatic protection sSWitching (APS).......ccccoieiiiiiiiiiiieiieeeeee e 50
5.3.2.1 APS configuration parameterscocueveruerienieeiienienieeieneeneeie e 50
5.3.2.2 How to configure (or not) the APS........ccoooiiiiiiiiiie e 53

Copyright © 2002-2008 by TelcoBridges inc. Page 3

TB640 User's guide CONFIDENTIAL 9000-00002-2H

5.3.2.3 Causes of a protection switching and associated alarmsc.cccceeevuierirenennne. 53

6 RESOURCEScuuitiiiriniintinsnicsensaesssiesssssesssicsssssessstssssssessssssssssssssessssssssssssssssssssssssssssasssess 56
6.1 Channel RESOUITES.cc.uiruiiiiiiiiriieie ettt sttt ettt sttt sbe et e b enees 56
6.1.1 Trunk resources/Line Service RESOUICES.......cc.ceiuiiiiiiiiiiiiiiiiiiieeieeee e 57
6.1.1.1 Code example #7: Allocate trunk resource using the implicit filter..................... 58
6.1.1.2 Code example #8: Free trunk resource using the implicit filtercc.cc........ 60
6.1.2 CTBUS TESOUICESeeuviiiieriiieiieeiitenite st ettt ettt et e et e bt sateesbe e et esaeesaneesbeesaneeneee 62
6.1.3 SEIEAIM TESOUITES ...eeutiiiiiiieiiieeeit ittt ettt e ettt e et e e bt e e st eesbeeesabeeesabeeenaneeas 63
6.1.3.1 Stream redUNdanCYccceecueeriieriiieniieeieeiee ettt eeteesae b e seae et e eeaeenaee e 66
6.1.3.1.1 Redundancy mode "NOMe”..........cceeeviiieiiieeiiieeiie et 66
6.1.3.1.2 Redundancy duplicate Mmodeccceerieeiieniieiiieiieeieeeee et 66
6.1.3.1.3 Redundancy switched mode............ccceevriiieriiiiiniieceeee e 67
6.1.4 TranSCOING TESOUICESeervierureeiierireeitientieeteesteeteesseeeseesseesseesseeasseesseesseesseesseensns 67
6.1.5 Multi-Blade Link re€SOUICESceouiiiiiiiiiiiieiiee ettt s 68
0.2 VOICE PIOCESSINZ . .ceuureeurietiieiieriieeteeniteeteestteeteessteeseesseeenseessseenseessseenseessseenseesssesseesssesnns 70
6.2.1 VOICE PrOCESSING TESOUICES. . .veeeerieeirreeeierreeisreeassreesssseeassseessseeessseesssseeesssesssssesssseessssees 70
6.2.1.1 TDM VP TESOUICE.....ccouuiiiiiriiiiiieiieeiteeiie ettt ettt et sttt ettt 70
6.2.1.2 TDM Flowthru VP re€SOUICEccoouiiiiiiiiiiiieiieeiee et 71
6.2.1.3 TDM FSK VP TESOUICE......ceoctiiiiiiiiiniieiieeeiie ettt st 71
6.2.1.4 TDM Echo Near/Far VP r&SOUICEccc.eeriiiiiiiiiiiiieiieiieeie e 71
6.2.1.5 TDM T.38 VP IESOUICEeeruiiiiiiiiiiiieeiieeite ettt ettt ettt 71
6.2.1.6 Stream VP TESOUICEcooiuiiiiiiiiiiiiiiiieeeieeeee ettt s 71
6.2.1.7 Stream T.38 VP TESOUICEcc.eeevuiiriiiiiiiiieiecee ettt 72
6.2.2 VOICE PIOCESSING STOUPS ..veeeurrrerrrrerrreeasreeeisreenseeessseeessseeessseeessseeessseessssessssseesssseessseees 72
6.2.2.1 Voice processing group0 (IVR) capabilities..........ccccceevirriieniienienieeieeieeeene 73
6.2.2.1.1 VP group0 resource usage eXampleS........ccevuvrerrurrerieeeniieenieeenreeeseeeeeeree e 74
6.2.2.2 VP group0 fUNCLIONS ...c..eeviiriiriiiiieiieiecieeere ettt 77
6.2.2.2.1 Tone Detection, Suppression and Generation.............cceeeeeeeveerrieeveerreesveennnn. 77
6.2.2.2.2 Automatic Gain Control (AGQC)......cceevuieriiiiiiniieeeee e 77
6.2.2.2.3 Voice Activity Detection (VAD)ccuiieiiiieiiieeieecieeeeee et 77
6.2.2.2.4 TDM to Stream switching (Record)..........ccoeveeriiiiiiniiiiiiiieeeeeeeeee, 77
6.2.2.2.5 Stream to TDM switching (P1ay)cccceevvieriiriiiriieeiieeeeie e 78
6.2.2.2.6 Conferencing (12 channels o1 1€8S)cocuieiiiiiiiiiiiiiiieeeee e, 78
6.2.2.2.7 Bridged Conferencing (12 channels or more)........c.ccccueeeveerieeciienieecreeneeennen. 78
0.2.2.2.8 FSKutieiiitieieee ettt ettt e aa e teenteeneenaeeneas 80
6.2.2.3 VP group0 APPlICAtIONS......cccvuiieiiiiieiiiiieeiieeeieeeeieeesiteeesteeereesereesereesseeesnneeenns 88
0.2.2.3.1 TVR oottt et naeenes 88
6.2.2.3.2 Voice recording With MuUSICcceervuiiiiiiiiiniie e 88
6.2.2.3.3 Recording @ CONTETEICEc..eeiiieiieiiieiie ettt 89
6.2.2.3.4 Background MusicC appliCationcccceevueeriieriiienieeiienie e eiie e eaee e 90
6.2.2.4 Voice processing groupl (Volp) capabilitiescccceveeviriineniiniiineeniniineene, 91
6.2.2.4.1 VP groupl resource usage eXamples.........ceecveerireerieeeriieenieeerieeeireeeeeee s 93
6.2.2.5 VP groupl fUNCHIONS ...cc.eoviiriiriiiiiiiieicieceteecce e 95
6.2.2.5.1 Tone detection, suppression, generation and relaycceeceeveeecvieneeeneennen. 95
6.2.2.5.2 Call progress tone deteCtioncc.erueeruiriirierierienieie ettt 96
6.2.2.5.3 Echo cancellationccocueiieriiiieniieienieteeeee e 97

Page 4 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

0.2.2.5.:4 COURCS ...ttt ettt ettt sttt st 98
6.2.2.5.5 Payload type VAIUES........ccueeeiiiiiiiieeieece et e 103
6.2.2.5.6 Mapping SIP SDP to VP Groupl resource parameters and payload types... 104
6.2.2.5.7 JIET DUTTETS ...eoeiiieiee e 111
0.2.2.5.8 VAD .ot sttt st 111
6.2.2.5.9 T.38 FaAX TRIAY 1.veervieiieiieiieieee ettt ettt 112
0.2.2.5.10 RTCP ..ottt sttt st e nbe e 112
6.2.2.6 VP groupl APppliCationS.........coeiuieiiiiiiiiiiieiiete ettt 113
6.2.2.6.1 Tdm to VOIP CONNECTIONSeveeutiriiiriieieeieniieieete ettt sttt st eeeseeens 113
6.2.2.6.2 Volp to VOIP transCoding..........ccecueerieriuieniiiiieiieeieesie et 113
6.2.2.6.3 Fax relay over Volp network (RFC2833)cccoeiiriiniiiiniinecienieieeeee 113
6.2.2.6.4 TDM Echo cancellationccooeeriiiiiiiiiiiiieeeeie e 113

T CONNECTIONS . ..coiiiisinsinsnisisssisssissssssisssass 114
7.1 Path deSCTIPTION. ...c..eiiiiiiii et sttt e 114
7.2 Code example #6: Connect two full-duplex resources using the implicit filter 117
8 SIGNALING ...uuiciiriisticnnsticsnecsssssncssissssssessssssssssnsssissssssesssssssssssssssssssssessassssssssssssssasssssssssaes 120
8.1 OVEBIVICW ...ttt ettt ettt et s h ettt bt et e e s bttt e st e e bt e bt st e sbe e bt estesbeebeentenbeens 120
1.1 ATCRITECIULE ..ottt ettt et e st et et ebee st ens 120
B.1.2 S ettt b et h et a et s ee 121

T G T T (€ RS S PP 121
8.2 Q.931 ISDN SigNaliN@......cccvieriiieiieiiieiieiie et et e et esieeeteestteebeesteesbeesseeenbeenseesnseenseanns 122
8.2.1 Trunk CONTIGUIATIONccuviieeiiiieiie ettt e e e e et eeetaeeseseeesnseeeenseeas 122
8.2.2 D-Channel 10Zical StAtUScccueeriieriieiiieiieiieeie ettt sbe e e 123
8.2.3 BIING UP SEUEIICE. .. .eeeetiieeiieeeiieeiiieeeiteeeitteeetteeetaeesseeesseeessseessssaeesseesssseessseeesssees 123
8.2.4 Call handle and USET CONLEXLSevueeruiriiriiiriieieniierieeie sttt ettt st 124
8.2.5 API request/response vs ISDN MESSAZESccccvvreriieeriieeiiieeiiieeireeeieeesreeesveeeneveees 125
8.2.6 ReStart PrOCEAUIE........cccviiieiiiiiiecee ettt e tae e e ree e e e s 125
8.2.7 B-CRanNe] STATUSecueertiiiiiiieiieieeitest ettt sttt sttt st e st et et e b e ee e 125
8.2.8 ASYNCRIONOUS ISSUECS....ceuiieiiiiiiietieeiieeiie ettt et e et estee et ee st eebeesateebeeenbeeseesnseens 126
8.2.9 Original vs extended ISDN API mMeSSAZE......ceeevierrieiiieiieeiiecie et eeiee et sve e ens 127
8.2.9.1 Extended ISDN API MESSAZEcocuermiimiriiriiiiieierierieeieetese et 129
8.2.9.1.1 How to fill IE buffer in ISDN request..........ccceevieeiierieriiieieeieenee e 130
8.2.9.1.2 How to parse IE buffer in ISDN notification..........ccccceceeveeneriinenncnncnnnn 134

8.2.9.2 Original ISDN API MESSAZE......cccveriierrieeiieiiieeieeiie et eiee e ereeereeseeeeveeseee e 135
8.2.9.2.1 How to fill or parse Information Elements (IE)...........cccccoeoiiiiiiiinniinnenne 136

8.2.10 PRI ISDN Call scenarios (Stack and TB640 APIS)........ccceeevvieiieniienienieeieeeins 142
8.2.10.1 Successful call placed from network-sidecccccecevieiiniiniiicniiniinennns 142
8.2.10.2 Successful call placed from network-side (overlap mode)...........ccoeevveennenee. 142
8.2.10.3 Unsuccessful Call placed from Network-sideccceeveeneinininiininncnnne 143
8.2.10.4 Unsuccessful Call placed from Network-side (app. Timeout) 143
8.2.10.5 Refused Call placed from Network-side.........cccceceviiniriiniiininniniiinicenne 143
8.2.10.6 Discontinued Call placed from Network-sidecccceeevierienciienieeieenenne, 144
8.2.10.7 Call placed from Network-side, discontinued by User-side............cccccecuenneeee. 144
8.2.10.8 Call collision (same B-channel)............ccccoevvieriiiiiiniiiciieniecieecieeee e 144
8.2.10.9 Successful Call placed from User-sidec.ccooeeveriinieniniinieeneeicneciennns 145

Copyright © 2002-2008 by TelcoBridges inc. Page 5

TB640 User's guide CONFIDENTIAL 9000-00002-2H
8.2.10.10 Successful Call placed from User-side (overlap mode)..........ccccveeceverureennennee. 145
8.2.10.11 Unsuccessful Call placed from User-side..........ccccveercrrrerireeniieesieeeceee e, 146
8.2.10.12 Refused Call placed from User-sidecceeeueerieeiienieeiiienieeieeie e 146
8.2.10.13 Discontinued Call placed from User-side...........ccccueerirrercieeenieeesieeeiee e 146
8.2.10.14 Call placed from User-side, discontinued by Network-side...........cccccevennenne 147
8.2.10.15 Disconnect collision (scenario starts in active state)ccceeeveercrveercreeennnnn. 147

8.2.11 PRI ISDN Call collision scenarios (TB640 and user application).............cccceeuue.n. 148
8.2.11.1 Connect collision (ISDN call arrived first)........cccoeeevveeiiieeiiieeieeeie e 148
8.2.11.2 Connect collision (User application call arrived first).........ccceevverreenieennnnnne. 148
8.2.11.3 Connect collision (both call received at the same time in the stack).............. 148
8.2.11.4 Disconnect collision (stack disconnect first)ccccecueeevieeicieeiiieeeeeeeenen. 149

8.3 CAS SIZNAIING ..ttt ettt e e st e e st e e sbeeessbeeesaaeesaeesssseesnsaeessseeenns 150

8.3.1 Trunk CONTIGUIATIONeeuiieiiieiieiie ettt ettt ettt e essaeebeesaaa e 150

8.3.2 Physical IINK STAtUS......cccuiieiiiieiiieeiie ettt ve e e e et e e enneeeseaee s 150

8.3.3 Call handle and USEI CONLEXLSeeueeriirieriiriieieeiienieeie sttt sttt 150

8.3.4 CAS Basic KNOWIEAZEccccuviieiiiieiieceee ettt e 151
8.3.4.1 RI CAS BaSICS...etiuiiiiiiiiiieitcieeiteie ettt sttt st s 152
8.3.4.2 R2 CAS BaSICS..uuiiuieiiieiieiieitieie ettt ettt ettt ettt te e steenneeneesaeeneeenee e 154

8.3.4.2.1 R2 China digitS.....cueeruiieiieeiieiieiiieeiieeie et ettt e eae et e et e sbeesseeseseensee e 156
8.3.4.2.2 R2 KOTEa QIZILS ...veeeeriieiiiieeiiieesiieesiee et e eteeeeteeeaeeseeeeesaeesaeeessaeeenneeens 158
8.3.4.2.3 R2 SiNapOore diZilScccueeriiiiiieiiieiieeieeriie et eite ettt sre et e beesteeere e enne 160
8.3.4.2.4 R2 Bangladesh digitS..........cccviiriiiiiiieeiiie et 162
8.3.4.2.5 R2 GENETIC QIGIS...eeeruiieuiieiiieiiieiieeieesie et eee et e seeeteeseae b e seaeebeesaaeenseeeene 164

8.3.5 PRI CAS Call scenarios (Stack and TB640 APIS)ccceeevviieeciiieiieeeieeee e, 167

8.3.5.1 R1 CAS (except Taiwan modified R1).......cccecueeiiiniiiiiiiiiiiiieeieeeeee 167
8.3.5.1.1 Successful call placed from network-side (non Direct-Inward-Dialing) 167
8.3.5.1.2 Successful call placed from network-side (Direct-Inward-Dialing) 167
8.3.5.1.3 Successful call placed from user-side (non Direct-Inward-Dialing)............. 168
8.3.5.1.4 Successful call placed from user-side (Direct-Inward-Dialing).................... 168
8.3.5.1.5 Call refused to network/user-side (timeslot busy or physical line down)..... 168
8.3.5.1.6 Call stopped to network/user-side because of protocol error...........ccoc...... 169
8.3.5.1.7 Call refused by user-side (non Direct-Inward-Dialing)c.cccceevvrennennee. 169
8.3.5.1.8 Call refused by user-side (Direct-Inward-Dialing)cccccccervvereivenicnnenn 170
8.3.5.1.9 Call refused by network-side (non Direct-Inward-Dialing)..............c........... 170
8.3.5.1.10 Call refused by network-side (Direct-Inward-Dialing)........c...cccceeeuennene 170
8.3.5.1.11 Call cleared by NEtWOTKccoveeiiiiiieiieiiieiieeie ettt 171
8.3.5.1.12 Call cleared by/uSer-S1decoceeruirriiriiniiiiinienieeiceceee et 171
8.3.5.1.13 Disconnect collision (both sides disconnect at the same time)................... 171
8.3.5.1.14 Disconnect collision (disconnect almost at the same time) 171
8.3.5.2 Taiwan modified Rcccooiiiiiiiiiiiie e 172
8.3.5.2.1 Successful call placed from forward-sidecoceeveeviiniiiniinniniiniencnnne 172
8.3.5.2.2 Call refused to forward-side (timeslot busy or physical line down) 172
8.3.5.2.3 Call stopped to forward-side because of protocol error.........c..cccceeveerueennnne 172
8.3.5.2.4 Call refused by backward-side...........cccceerureriiieriieniieiieeieeiece e 172
8.3.5.2.5 Call cleared by forward -Side.........ccccevueriiriiiiiniinieiieiccereeee e 173
8.3.5.2.6 Call cleared by backward-sideccccceeeureriieiiieniieiieeieeeeee e 173
Page 6 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

8.3.5.2.7 Disconnect collision (both sides disconnect at the same time)..................... 173

8.3.5.2.8 Disconnect collision (disconnect almost at the same time)ccc........ 173

B.3.5.3 R C A et ettt sttt 174
8.3.5.3.1 Successful call placed from forward-sidecceeveeriiiiiiiiiiniiieeiee e, 174

8.3.5.3.2 Call refused to forward-side (timeslot busy or physical line down) 174

8.3.5.3.3 Call stopped to forward-side because of protocol error/network congestions or

DUSY CONAIEIONeieitiieiiieiie ettt ettt ettt et e et e et et e esbeeesbeenseesnseenseassseenseas 174

8.3.5.3.4 Call refused by backward-side............ccccuereriiieiiiieiiieeieece e 175

8.3.5.3.5 Call cleared by forward-sideccevoueeiiieiiieiiieiiiciiee e 175

8.3.5.3.6 Call cleared by backward-sideccccueeeiiiieriiiieieecieeee e 175

8.3.5.3.7 Disconnect collision (both sides disconnect at the same time)..................... 176

8.3.5.3.8 Disconnect collision (disconnect almost at the same time)cc........ 176

9 CLOCK CONFIGURATIONS 177
9.1 ClOCKING AESCTIPLION ...eeevevieeiiieeiiieeiieeeciee e et e e e tteesteeesaeeeeteeesaaeesaeesssaeesssaeessseeesnseennns 177
9.2 Primary, Secondary Master and S1ave...........ccceeviieiiiiiiiiniiiiieie e 178
9.3 Primary Master and Standalone.............cccveeriiiiiiiiiiiieeeeee e 179
10 DS3 AND STM-1 CLOCK CONFIGURATIONSccoirvirinsursrenssessanssessanssssssessssssssssssaes 180
11 ADAPTER MANAGEMENTuuciviiinsinsenninssicssisecssicsssssesssessssssessssssssssssssssssssssssssssasssess 181
I11.1 Resetting the adapter........c.ueiiieiiiiiieiecee ettt seneeeeas 181
12 FAULT TOLERANCE AND HIGH AVAILABILITY ...cccceeevienniiisnncssecssnnsssnssssssssssssassnns 182
12.1 Network redundancy.........ccoouieiiiiiiiiiecie et 182
12.2 NP1 facility Prot@CtiON......cciiiiieiiieeiiieetee et e ete e eiee e e e e steeesaee e aeeesaaeesaeessseesaneenns 183
L2.2.1 OVEIVIEW .ttt ettt ettt et sttt et be ettt sb et eat e ebeenbeeatenaeens 183
12.2.2 Cable Managementcccueeeeuieeiiieeiiieeeieeeiteesieeeeieeesaeeeseaeeessaeesseeesseeesnseeensnes 185
12.2.2.1 POWET SRATING......iiiiiiiiieiieceeeee et s 186
12.2.2.2 Slot ID and connector IDcccooiiiiiiiiiiiiee e 186
12.2.2.3 ALGIIMNS .eiiiiiieiecieeteee ettt ettt ettt e et e st e nteesa e beenbeeneenseenseenaens 186

12.2.3 ChassisS ManaGEMENLc..ccveevieruieeiiieniieeieenieereessaeeseesseeeseesssesseessseeseesssesnses 186
12.2.4 TaKEOVET OPETALIONecuviiiiieiieeiiieiie ettt et e stte et e tee et e sate et e e s eteebeesateenbeesaeeenseas 186
12.2.5 RElCASE OPETALIONceeiuiiiiiiieeiiieeitee ettt e ete e et e e st e e tee et eeesaaeeeeneesnseeesnseeesnseeennnes 187
12.2.6 Traffic Status......coooiiieiiiece e et e e e e eaa e e e reeeenns 187
12.2.77 Primary PIESEICEcccuiiiviiiiiiiieeiiieeiie ettt et ee e e et e e et e e saaeesnseeeennes 187
12.2.8 NPIIO LED StatUs ...cuuviiiieiiiieieciiiee ettt eeveee e e svee e e e eve e e e ennreeeesnnnaaaeensaeas 187

12.3 Fault deteCtion......ceuiiiiiiieiieiieieeee ettt ettt 187
12.3.1 Events to monitor for fault detectioncccueeeiiiieeiiiecie e 187

13 MULTI-BLADES SYSTEM ...uucininninrinnninsenssnsssissesssnsssssssssssssassssssssssssssssssssssssssssassssssssssssss 188
I3.1 OVEIVICW ..utiieiieeeiieeeiee et ettt e ettt e et eeeta e e s taeessbeeessaeeaasseeenssaaanssaeanssaeasssaeassaeennseeessseeanns 188
13.2 Blades SyNChronizZationcceeeiiiriieiiieniieeieeiieeteertee e eseeesae e aeeereessaesseesseeesseensnas 189
13.2.1 System clocking mMOdecc.coouiriiniiiiiiiiiicieeeceee e 190
13.2.2 Clock selection MeChaniSIMc.eoeeiuieierieriieie ettt 191

13.3 POItS MANAZEIMENT . ..c..uiiiiiiiiiiiieiitie ettt ettt ettt et e st e e st e e s bt e e sabeesebbeesaaeeesaneeeas 192
13.4 Resources ManagemMENL.........c.ceeeueeerueeriureeriireertteeniseeesaeeensseeessreesssseesssseesssnesssseesssseesnns 193
13.5 States and statistics INTOIMATIONc..eeecuiieeiiieeeiieecieeecieeeste e e e ee e e e e sreeesareeesaaeeenns 193

Copyright © 2002-2008 by TelcoBridges inc. Page 7

TB640 User's guide CONFIDENTIAL 9000-00002-2H

13.6 Alarms and INAICALIONScc.eeeiieriiiiiieie ettt et see e e ae et e saaeebeesnseeneees 193
13.7 Redundancy faCilitycceeeiiiiiiiiiiiiiie ettt e e tee e e e saaeeenareeen 193
13.8 POTt LED StAtUS.....ceeiiiiiiiieiiiie ettt ettt ettt e et e st e st e e sabaeesabeeenaneeenns 193
14 SNMP ..uuiiiiiiiiinneisnineisecssiesnsssisssissssssecssissssssessssssssssessssssssssesssssssssssssssssssssessssssssssssssessasssess 195
T4.T OVEIVIEW .ttt ettt ettt ettt et sh ettt s bt et ea e sb e et sate s bt et e ennenaeenee 195
14.2 SNMP LIMItatiON..c..ieiiiiieiieeiesiieie ettt ettt st ste et e sseeteeseesseenseeneesseensesneenes 195
14.3 SNMP MESSAZES ...eeeeuvieeeiiieiriiieeiiteeitteeseitee sttt e stteesteeesiteeesabeeessaeeesaeessteessseeesseeesnseesnns 195
14.4 SUPPOTLEd MIBSooiiiiieiieeie ettt et e et e e e e e e et e e essaeessseeennseeenns 196
14.4.1 RFEC 1213 MIB Lottt sttt 196
14.4.2 RFC 2959 Real-Time Transport Protocol Management Information Base............ 196
14.4.3 RFC 2495 DS1, E1, DS2 and E2 INterfacesoevvviiiieiieiiiiieiiiieeiciieeeeee e 196
14.4.4 RFC 2496 - Definitions of Managed Object for the DS3/E3 Interface Type......... 196
14.4.5 Telcobridges Private MIB (TB-MIB)cccceiiiiiiiniieiieniieeecee et 197

14.5 BrowSiNg MIBS......ccooiiiiiiieiiie ettt ettt e et e e taeessaeeesaeeessaesssaeesnseeessneeenns 197
14.5.1 Get aSiNGIE ODJECL.....uiiiuiieiieiieiie ettt et ettt et et e eabe e 197
14.5.2 Get the NEXE ODJEC...cciiuiiiiiiiieiie ettt et e et e et e e ssaeeeereeeaaeeesaeeenns 198
14.5.3 Get aSPeCifiC taDI@.....coiuiiiiieiiieiiee e e 198
1454 Getatree Branch........oocoiiiiiiii e 198

15 REVISION HISTORY .uuioviisviiruinsensinsaissenssesssnssasssssssssssssssssssssass 199

Page 8 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

Figures
Figure 1: High-level SOftWare VIBW..........ccciiiiiiiiiiiiieiiecie ettt eeen 14
FIGUIE 2: IMESSAZE LYPCS .uvvieeriieeiiieeiiieeitteeeitteesteeestaeestteessseeessseaessseeessseeeasseeessseeensseesnsseesnseeessseens 15
Figure 3: Message type and fIlteTS........c.eeiiieiiiiiieiie ettt en 17
Figure 4: Asynchronous Messaging (explicit filtering).........cccceeevvieriieeniiieeiiie e 18
Figure 5: Synchronous Messaging (implicit filtering)..........ccevieriiiiieeiiienieeieerie e 18
Figure 6 TB640-STM1 Line Interfaces/Services Tree (SDH configuration)...........ccceeeeveeevveennenn. 34
Figure 7 TB640-STM1 Line Interfaces/Services Tree (SONET configuration)cccccveevuvennenne 34
Figure 8 TB640-DS3 Line Interfaces/Services TTEEccvevuiiiiiiieiiieeciieeeiee e 35
Figure 9 TB640 Line Interfaces/Services TIee........ccoiviiiriiiiiieriieiieiie ettt et 35
Figure 10 - SDH mapping (ITU G.707) c..ueeeeieeeieeeieeeee ettt iae e e ve e e svae e snvae e s 47
Figure 11 - SONET mapping (GR-253-CORE)c.cooiiiiiiiiiieeeeeceee et 48
Figure 12 - Linear and 1ring tOPOLOZYcccvuiieiieiiiieeeiie ettt ettt tee e aee e s aee s vee e sbeeennnee s 50
Figure 13 - 1+1, I:'n and 1:1 APS configurations...........cccueecvieriieniieniienieeiieeie et 51
Figure 14: All 1E€SOUICE CALEZOTIES ..eevuvrieeiiieeiieeiieeeeieeesieeesteeeseteeessaeeessbeeessseeesseessseessseesnsseensseens 56
Figure 15: Trunk reSOUICE CAtEZOTIESviivieruiieiieriieeieeniieeteesiteeieestteeteesaeeeseeseaeeseesseesnseessneeseens 57
Figure 16: TB640 trunk timeslot alloCation............ccccueeeiiieeiiieeiiie e 57
Figure 17: CTBUS IESOUICE CALEZOTICSeeuvieerieiierireeiieniieeteesireeseessseenseessseeseessseeseessseeseesssessseens 62
Figure 18: TB640 CTBUS timeslot alloCationcccuieeiiiieeiiieeiieeciieeeiee e 62
Figure 19: TB640 CTBUS allocation eXample...........cc.eecuieriieiiieiiieiiieeiieiee ettt siee e seneeeens 63
Figure 20: Stream resource high-1eVel VIEWc.ccooiiiiiiiiiiiiiceeeeeeee e 64
Figure 21 - IP/UDP packet header desCriptioncceevieeiiieriieiiieiieeieeeee et eee e 65
Figure 22: Stream reSOUICE CAt@ZOTICS .. .cuvurirurrerireerieeesreeesieeesteeessreeessseeessseeessseeessseesssseesssseesssees 65
Figure 23: Redundancy network configurationcoccueeeuierieeiienieeniienie e eee e 67
Figure 24: Transcoding reSOUICE CALEZOTIESeerurrrerrreeriieerieeesteeesereeessreeessseessseesssseesssseesseeesssees 68
Figure 25: Multi-Blade Link reSOUIce Cate@OTiescccueeiuiiriieniieeiieiiie et siie ettt 68
Figure 26: Multi-Blade SYSteIMccc.eeiuiiiiiiiiieiiciiecie ettt ettt sbe v e ssveesaeensaens 68
Figure 27: VP group0 TDM resource SChematiC...........cecueeriieiiierieeiieeieeiie et et siee e seee e 73
Figure 28: VP group0 TDM flowthru resource SChematiccceevveeciierieeriienieeiieeieereesve e 73
Figure 29: VP group0 stream resource SChematiccceevureiiieiieeiiieniieiiesie e 73
Figure 30: VP group0 TDM FSK (RX) resource SChematicccceevveeiieriienciienieeiiesieeieesee e 74
Figure 31: VP group0 TDM FSK (Tx) resource SChematic..........cccocueveevieriineeneeiieneeneeienecnneene 74
Figure 32: VP group0 conferencing SChematiC...........ccueevuieeiieriieriieiiieeieesiie e eveesee e seneeaeens 74
Figure 33: TDM VP TESOUICEcouviiiiieiieiitietieeiie ettt ettt ettt ettt e snteebeesabeebeesnseeseesnseens 75
Figure 34: Stream VP TESOUICEccovuiiiiiieeiiie ettt ettt et e e ate e s tae e e aee s snbeeesnseeesnnee s 75
Figure 35: Play and RECOTdcoiiiiiiiieiee et ettt 76
Figure 36: Four party conference with TDM and Stream inputs and tone detection and suppression
.. 76
Figure 37: TDM CONTEIENCEeeeuviieiiiieeiieeiiieeeiee et estee ettt e et e et ee e aaeeeaaeesaaeesnsaeesnsaeennneees 78
Figure 38: Bridged COonference.ooviruiiiiriiniieiieicnie ettt 79
Figure 39: TVR apPPLICALIONooviiiiiiiieciiecieeeiiceie ettt ettt ettt e s sbeesaeeseseebeessseensaesnsaens 88
Figure 40: Voice recording with music application............ccceeririiiiiieiiiieieeiceee e 89
Figure 41: Recording @ CONTETENCEcccviieiiieiiiie ettt ettt e eaeeeeeaee s 90
Figure 42: Background MusiC APPIICATIONccueiiiiieriiiiiieiieeiieeie ettt 90

Copyright © 2002-2008 by TelcoBridges inc. Page 9

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Figure 43: VP groupl TDM resource schematic (when used in conjunction with a stream resource)
.. 91
Figure 44: VP groupl TDM resource schematic (when used standalone)cccccecevvenenienennnene 91
Figure 45: VP groupl TDM flowthru resource schematicccceccveeeviieeriieeeiie e, 91
Figure 46: VP groupl stream resource SChematicCcceevueeriierieeiiieniieiiesie et eieeiee e eseeeevens 91
Figure 47: VP groupl TDM T.38 resource SChematic..........ccceevieieiiieeiiieeiieeciee e 92
Figure 48: VP groupl stream T.38 SCheMALICc.ceviiiiiieiiieiiecieeiie et 92
Figure 49: VP groupl TDM echo SChematiC..........ccoviiieiiiieciieeiiiecieeeee et 92
Figure 50: VP group using VP TDM resource (flowthru).........coecvieriieiiieiiiiiiiiieciieieeeeeee 93
Figure 51: VP group using VP TDM resource (pure-TDM)ccceeviiieviieeiiieeiie e 93
Figure 52: VP group using VP TDM and Stream reSOUICESccveeruieeiieriieeiieniieeieeniieeveeseneeeens 94
Figure 53: VP group using VP TDM T.38 and stream T.38 1€SOUICEScccvverrureeerieeerreeeireeennen. 94
Figure 54: VP group using two VP TDM €ChO T€SOUICEScc.eeruiieiiieriiieiienieeiieeieeiee e 95
Figure 55: Unidirectional €cho canceller...........cccvviiiiieiiiiiiiiiicciie e e 97
Figure 56: Bidirectional echo cancellationccoecuiiiiiiiiieiiiiiiieie et 98
Figure 57: TB640 high-level view of CONNECLIONScccviieeiiieiiieeiiieerieeeeiee e 114
Figure 58: Path description to connect two full-duplex resources...........ccoeveervieenieeieeneeeieeieene 114
Figure 59: Path description to connect three full duplex resources.........ccccoeeveeeviieecieeenieeeieenne, 115
Figure 60: Path description to connect aSymmetric TESOUITEScuueereerurerrreerreereenereenseeeseenseeenne 116
Figure 61: Path description to connect resources (single source to multiple destinations)............ 116
Figure 62: Path description to connect resources (multiple sources to single destination)............ 117
Figure 63: ISDN Signaling Stack INSTANCEScc.eeeviiiieriieeiiieeiiee e e eree e eeereeereeeereeeeree e 120
Figure 64: Network with Q.SIG endpOintS........cc.ceviieriiieiieiieiieeiee ettt 122
Figure 65: TB640 internal clock configurationccceeeeiieeiiieeiiie e 177
Figure 66: Master clock CONfIgUIaAtioN...........ocueeeiieiiiiiiieiieeie ettt 178
Figure 67: Master and standalone configurationccceeevieeriieeiiee e 179
Figure 68: NP1 normal primary facility traffic flow — Redundant Released.............c.ccccuevieennenne 184
Figure 69: NP1 switched primary 1 facility traffic flow — Redundant Takeoverccc....... 185
Figure 70: Multi-Blades system scheme with redundant TB-MB option...........ccccceecueevieiirennnnnne. 189
Figure 71: Clock sources of the system blades...........cccueeiieriieiiiiiiieiieiecece e 190
Figure 72: Clock selection mechanism with Multi-Blades system..........ccccceeerieneriinicneniicnene 192
Page 10 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

Tables

Table 1 LiNe INTETTACEScc.eeviiiiriiiiiiieeitet ettt sttt et st a bt 33
Table 2 Line services and theirs PATCNLSccccvieeiiieeiiieeiieeeciieesieeeeteeesveeesteeeeaeesaaeessaeesseaens 41
Table 3- APS affecting failures/alarms.............ccccoeiuieiiiiiiiiiiiiieeeee e 54
Table 4 - APS requests and PIIOTITIESeeecuvierciieeeiiieeeiieeeieeesieeesteeesaeeessaeeessseeesaeessseessneessseeens 55
Table 5 — North America/USA call progress tone definitions...........c.ccceeevueeriienieniieniecieenie s 96
Table 6 — China call progress tone defiNItionscccuieeiiieeriieeeiiieeiee e e e eveeseeeereeeeaee e 96
Table 7 — Korea call progress tone definitionsceccueeriieeiieniieniiieiie et 96
Table 8: Volp supported COAEC LIStooiiuiiiiiiiiiiiieeieece ettt e eaee e 99
Table 9 - Codec payload type values per RFC3551oooiiiiiiiiieiiieeeeeeeee e 103
Table 10 — Payload type values assigned staticallyccceeeviiiiiiiiniiiinie e 104
Table 11 — Payload type values dynamically negotiated.............ccceevieriiieniieiiienieeiieieeeee e 104
Table 12: Q.931 ISDN VAIIANTScccoiuiiiiiieiiiie ettt e et e e et e e e et e e e e eaar e e e e eareeeeeensneas 122
Table 13 - Bring up SEqQUENCEe DENAVIOTcccuieiiiieiieiieeiieciie ettt ettt 124
Table 14 — Common messages used in both original and extended ISDN APTccccceveene. 127
Table 15 — Matching between original and extended ISDN messages.........coceveereerieneenieneennenn 128
Table 16 - Messages used in Extended ISDN APcoooviiiiiiieeeeeeeeeeeee e 129
Table 17 — Allowed, typical and prohibited IEs depending on request type.........cccceevveereenerennnen. 130
Table 18 - IE formatting helping mMacroS.........cccviiiiiiiieiiieieiie et e e 132
Table 19 - IE parsing helping MAaCTOScccueeeiieriieiiieiie ettt ete et e et esreeseeseseeeeas 134
Table 200 CAS VAITANTS....cc..iiiiiiiieiie ettt ettt e st e e st e e bt e sbe e et e e sabeenbeesseeeneeas 150
Table 21: R1 CAS DTME digitS....cccuiecuiieiieiieiiieiieeie ettt ettt e e siaeebeesaeeenbeessaeeneeas 153
Table 22: MEFRT CAS iZItS ...eeueeieriieieeieeieeie ettt ettt sttt ettt te et e saeenseentesseenseeneenes 154
Table 23: R2 CAS China, Group I (forward) digitsceeeveriieriieniieiieeie e 156
Table 24: R2 CAS China, Special SIZNAlScccceeeiiieiiiiiciiieciie et 156
Table 25: R2 CAS China, Group I (forward) KA digitS.........ccceverviniiniininiiniinenieceeeeieeee 156
Table 26: R2 CAS China, Group I (forward) KC digits.........ccceeviieriiriiiniieieeieeie e 157
Table 27: R2 CAS China, Group I (forward) KE digitsccceveriiiniiniiiiniiniicieceeeciee 157
Table 28: R2 CAS China, Group II (forward) KD digitScccceeuieriiriiieniieiieniecieeeeeeieeeeve e 157
Table 29: R2 CAS China, Group A (backward) digits.........ccceveevueriiiriininiinierieeicneeieee e 157
Table 30: R2 CAS China, Group B (backward) digitSc.ccceeeriieriiriiiiiiieieesie e 157
Table 31: R2 CAS Korea, Group I (forward) digitsccceveriiiniininiiiniinieieneeeceeeeeee 158
Table 32: R2 CAS Korea, Group II (forward) digitS.........cccceevvuieriieriieniieiieieeieecee et 158
Table 33: R2 CAS Korea, Group A (backward) digitS........cccceveeriivieniiniiniiiiniceeeeeeeeee 159
Table 34: R2 CAS Korea, Group B (backward) digitS..........cccceevuieriiieiieniieieeieceeeeeee e 159
Table 35: R2 CAS Singapore, Group I (forward) digits.........ceceveeririinieniniiniineeieeeeeeeneenne 160
Table 36: R2 CAS Singapore, Group I (forward) digitsccceeveeevrieriieiienieeieeieeeeeee e 160
Table 37: R2 CAS Singapore, Group III (forward) digitscoceeveriiniininiiniiniiiiceeeeieneene 161
Table 38: R2 CAS Singapore, Group A (backward) digitsccceevvurerieriiienieniieieeieeeeeee e 161
Table 39: R2 CAS Singapore, Group B (backward) digits.........cccceveviineiiiniiniiniiiineciceicee 162
Table 40: R2 CAS Bangladesh, Group I (forward) digitscccoceeeviieniiiiiiinieeieecieeieeeeeeeeen 162
Table 41: R2 CAS Bangladesh, Group II (forward) digitS.........coceverviiriieniininiiniiiciicneceene 163
Table 42: R2 CAS Bangladesh, Group A (backward) digitS..........ccccueeviiriieviieniiiiieeieeieeeve e 163
Table 43: R2 CAS Bangladesh, Group B (backward) digitsccccocvereeiiniiineininiineeeeienene 163
Table 44: R2 CAS Generic, Group I (forward) digitsccevvvieriiiiiiieniiiiieieeieeee e 164

Copyright © 2002-2008 by TelcoBridges inc. Page 11

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Table 45: R2 CAS Generic, Group II (forward) digitS........cceevuieviiiriieiiiniieierieeieeee e 164

Table 46: R2 CAS Generic, Group A (backward) digitS.........cccvvveeviieeiiieeieeeieeeeeeee e 164

Table 47: R2 CAS Generic, Group B (backward) digitscceecvieriieiiieniieiiecieeeeeieeeeeeeeeen 166
Page 12

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

INTRODUCTION

This User’s Guide is intended for the users of the TelcoBridges adapters. It will explain the concepts behind the API
and how it can be used to build complex applications. Some telecommunications knowledge is expected from the
reader as well as a basic understanding of the “C” language.

This manual is divided into sections that are constructed to be read in a linear fashion. It is recommended to read the

User’s Guide entirely before developing an application. This manual can be seen as the preface to the TBX API
Reference Guide and the TB640 Msg API.

Copyright © 2002-2008 by TelcoBridges inc. Page 13

TB640 User's guide CONFIDENTIAL 9000-00002-2H

1 OVERVIEW

The TelcoBridges API family is intended to give full flexibility to the user while providing accessibility and control on
all the adapter functions. The API calls allow you to configure the TelcoBridges adapters, allocate and define
resources, connect them together, initiate and accept calls and manage the adapter. It is based around a message passing
mechanism that is asynchronous by nature. Three types of messages are available to the application designer: requests,
responses and events. Requests are used to send commands and they can be sent by the user application or by the
adapter. A request is always associated with a response which will carry the result of the execution of the request. The
third type of message is used for asynchronous notification of events.

The transport mechanism for the messages that are exchanged between the application and the adapters is transparent
as seen by the application. The discovery of which adapter is available to the application is automatically done by the
library and information can be retrieved by a simple API call. The application can then use the list of adapters returned
to decide which one to attach to. An adapter that has its two ethernet ports available can be attached to using network
redundancy mode. In network redundancy mode, the application will continue to communicate seamlessly with the
adapter even if one of the networks fails.

Two types of resources are offered by the TelcoBridges adapters: channels resources and voice processing resources.
Channels resources are physical entry/exit points that can connect to the exterior world (trunk, H.110, etc.). They must
be allocated by the application before being used specifying the exact location (trunk, stream, timeslot, channel...) of
the resource to be allocated. Voice processing resources are used to modify the contents of the voice channels handled
by the adapter (tone detectors, conferencing, play, record, etc.).

Interaction between the signaling entities and the user application are done using the same messaging interface.
Requests for call setup and teardowns are originated by the application while request for incoming call setup comes
from the adapter. The signaling protocol is configurable on a trunk per trunk basis and multiple different signaling
protocols can be used simultaneously on different trunks. Moreover, this can be done live without restarting or
rebooting the TelcoBridges adapter.

User application - User application

Host library (APIs) Host library (APIs)

IP Network

(TB640 }{ TB640)

Figure 1: High-level Software view

Page 14 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

2 MESSAGES

All the communication between the user application and the adapter is done via the use of messages. Three types of
messages are available to the user application: requests, responses and events. All three types of messages can be sent
and received by the application. Requests are always followed by an associated response. Response is sent back to the
application which sent the request, not any other application. Events are sent by the TB640 to all applications attached
to the TB640. Messages sent using the TelcoBridges API are inherently of an asynchronous nature. Facilities are
provided to operate in a synchronous manner. Filters are used by the application to select which messages should be
processed.

User application

Host library (APIs)
A A

1senbay
Event

Response

(TB640)

Figure 2: Message types

2.1 Asynchronous messaging

This API is designed to allow applications to get full advantage of the parallel processing capability between the host
and the adapters. It is possible, for example, to send multiple requests in batch and wait for responses in a separate
thread or only when the application is ready to do so. Note that responses are not sent back to the application using
callback functions. The application will never get interrupted by the API. The application decides when it is time to
wait for the responses or events. The application should use multi-threading to do operations in parallel as much as
possible and to obtain best performance. Responses can be matched with requests using implicit filtering services,
however explicit filtering is more appropriate when performing asynchronous message exchange. The implicit filtering
should be seen as a service to implement synchronous kind of call and explicit filtering service to implement
asynchronous call. The application can use the TBX MSG _USER CONTEXTx SET and
TBX MSG_USER_CONTEXTx_GET macros to write / read user context fields to be able to match response and
request messages.

Note: for easy usage, a macro named TBX FORMAT MSG_ HEADER is used to set the appropriate fields of a
message before sending it to the board.

2.1.1 Why asynchronous messaging?

The TB640 adapters handle a high number of resources. Each resource is independent from the others. Because of the
very high number of resources, it is not feasible for a host application to dedicate one thread per resource. Instead, we
recommend using few threads (typically one thread per host processor) to handle state changes of big number of
resources.

Copyright © 2002-2008 by TelcoBridges inc. Page 15

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Of course, when one thread is responsible for multiple resources, everything must be handled asynchronously. For
example, after sending a “allocate resource” request to an adapter, the thread must be immediately available to send
more requests or process incoming events/responses from any resource. Eventually, the response from the “allocate
resource” request will be received and the state machine for the corresponding resource can go on.

Using this coding scheme will allow taking advantage of 100% of the CPU power available on the adapters or host
CPUs.

It is very important to understand that it’s illegal to perform any synchronous operation within such an asynchronous
state machine. In fact, the host thread must always be available to process incoming responses and events. Using purely
asynchronous code allows the thread to handle any task while a particular resource is waiting for a response. Also, if a
resource dies, it will not affect other resource’s state machines.

2.1.2 Zero loss of responses and events

To simplify coding of asynchronous applications, the TB640 API has been developed to provide zero loss of responses
and events.
Every request will have one, and exactly one, response returned. The response may indicate success or failure. Thus a
state machine does not need to use any timers or complex management'. Reception of the response is assured unless
the host application receives the event TBX MSG ID API NOTIF_ADAPTER REMOVED, which indicates
communication between host and adapter has been interrupted.
In summary, after sending a request, the possible situations are:
- Response (success) is received. State machine can continue for this resource.
- Response (failure) is received. State machine should cancel for this resource.
- Adapter is disconnected. State machine should “stall” for every resource until adapter is reconnected. When
adapter is reconnected, host application should list resources and connections to resynchronize its state
machine with the adapter for all resources.

2.2 Synchronous messaging

This API has not been designed to perform synchronous calls but it is an easy task to do in the application code to
perform call that behaves synchronously. The application can use implicit message filtering method to block and
retrieve responses using standard TBXReceiveMsg call just after request has been sent using the standard
TBXSendMsg call. Code examples in this document that use the implicit message filtering method are illustrating the
synchronous messaging strategy.

2.21 Dangers of synchronous messaging

It is highly recommended to develop applications using asynchronous state machines. When using ISDN, CAS or SS7
stacks, not only is it recommended, it is mandatory.

Using an asynchronous state machine allows the application to process changes on a resource while results of
operations on other resources are pending. This allows using the full potential of the host and adapters. Applications
using this scheme will easily get 10 times the performance of applications that process everything synchronously.

Keep in mind that, within an asynchronous state machine, synchronous calls are illegal.

2.3 Filters

Filters are an important concept in the TelcoBridges API. They are used by the application to indicate to the API which
messages it wants to receive. The application can create as many explicit filters as it wishes to. Each filter has an
associated queue (FIFO) where the incoming messages that match the filter are queued. The application can then
retrieve theses messages at its convenience.

! Some signaling stacks (ISDN, CAS, SS7) may require the host to implement some timeouts for specific state machine
states. For applications using these stacks, please refer to the appropriate section of this document. For any other state
machines, no state machine timeouts are required as long as the adapter remains connected to the host.

Page 16 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

In a more detailed manner, when a message is received by the API from the adapter, the API scans the list of filters that
were registered by the application to find all the ones that match. It then creates multiple copies of the message and
queues all of them for later retrieval by the application. After having put the message on the filter’s queue, the API will
then check if any thread is blocked waiting for a message on this filter and awaken one of them. Only one thread must
be waiting on a particular filter or else the API will choose the one to schedule in a random fashion.

(User application R

Thread1)(Thread2)(Thread3)

§ i

(Host Iibraﬁ\ '/ / k

(Send Queue (Filters)
A A

}sanbay
Response
Event

(TB640)

Figure 3: Message type and filters

2.3.1 Explicit filters

When a request is sent to the adapter by the application using the TBXSendMsg call, the application can tell the API
(using a NULL pointer for out_phFilter argument) that no implicit filter is required. The application can create its
own filters with TBX CreateMsgFilter call and use its own strategy to retrieve and match asynchronous responses with
previously sent request. This brings out another powerful aspect of the filter mechanisms: the user application can
create multiple filters corresponding to certain selected messages. At this point, the library allows the user application
to create filters that traps messages from a specific adapter, a certain type (request/response/event), a specific message
ID, specific message group (e.g. all trunk related messages), specific user context(s) or any combination of any of
those. This mechanism allows a user application to redirect incoming events to a specific flow of processing without
having to do a special lookup sequence.

The application has the possibility to set whatever value in the two user context fields in the header of each message
sent using the TBX MSG_USER_CONTEXT1_SET or TBX MSG_USER_CONTEXT2_SET macros. Every
response header will contain the user context fields that match the request’s user context field(s) initialized by the
application. If desired, the application can also use one of the context to store a value for the filtering (such as the
thread ID that would process the response) and use the other one to store a structure pointer for fast dereferencing.

Copyright © 2002-2008 by TelcoBridges inc. Page 17

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Thread #1 Send Message Thread #2 Receive Message

1. Get a message buffer (TBXGetMsg) = hMsg 1. CreateFilter (TBXCreateMsgFilter) = hFilter

2. Fill Header & Payload LOOP

3. Send Message (TBXSendMsg(hMsg)) 2.Receive Msg (TBXReceiveMsg (hMsg, hFilter))
3. Process Message

4. Free the msg buffer (TBXReleaseMsg(hMsg))
END LOOP
5. Release the filter (TBXDestroyMsgFilter(hFilter))

Figure 4: Asynchronous Messaging (explicit filtering)

2.3.2 Implicit filters

When a request is sent to the adapter by the application using the TBXSendMsg call, the application can ask the API
(non NULL pointer for in_pFilterHandle argument) to create an implicit filter that will match the expected response
for the request sent. Note that an arbitrary number of operations can be executed between the call that sends the
message and the one that receives the response, including sending other messages to the same adapter. As the internally
generated messages are inherently asynchronous, the application cannot take for granted that multiple requests will be
retired in order. Although, the application can use the implicit filter to tell implicitly to the API which response the
application wants to receive exclusively in a synchronous kind of behavior. If a response finds a matching implicit
filter, then only this implicit filter will receive the message. Thus, the response will not be received by any other
explicit filter that would have otherwise received this message.

IMPORTANT Note #1: The application is responsible to destroy the implicit filter when it is not used anymore.
Failure to do so will probably end-up in the application leaking buffers and requiring enormous amount of memory out
of the system.

IMPORTANT note #2: The response from a request will always be received (unless the
TBX MSG _ID_API_NOTIF_ADAPTER REMOVED event is received). A timeout in a TBXReceiveMsg using
an implicit filter does not mean the response is lost, only that it has not been received in the timeout period specified in
TBXReceiveMsg. Thus we recommend using an infinite duration in the in_unTimeoutMSec parameter (-1) or a do
loop until this message is received.

Send and Receive Synchronous Message

. Get a message buffer (TBXGetMsg) = hMsg

. Fill Header & Payload

. Send Message (TBXSendMsg(hMsg)) = hFilter

. Receive Message (TBXReceive(hMsg, hFilter))

. Process Message

. Release the filter (TBXDestroyMsgFilter(hFilter))

. Free the message buffer (TBXReleaseMsg(hMsg))

~ DW=

Figure 5: Synchronous Messaging (implicit filtering)

2.4 Code example #1: Create an explicit message filter to retrieve
event messages from all accessible adapters

Here is a code example showing how to create an explicit message filter to retrieve event messages from all accessible
adapters:

Page 18 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

TBX RESULT API APIResult;
TBX FILTER PARAMS aFilterParams [1];
TBX FILTER HANDLE hFilter;

/* Create an explicit message filter to retrieve all event messages from all
accessible adapters */

aFilterParams[0] .un32StructVersion = 1;

aFilterParams[0] .FilterMask = TBX FILTER MSG TYPE;

aFilterParams[0] .MsgTypeMask = TBX MSG TYPE EVENT;

APIResult = TBXCreateMsgFilter (

in hLib, /* Library handle returned by TBXOpenLib call */
(sizeof (aFilterParams) / sizeof (TBX FILTER PARAMS)),
aFilterParams,

&hFilter);

/* At this point in the code, FilterHandle could be used as argument by
TBXReceiveMsg, TBXWaitMsg and TBXFlushMsgs calls to retrieve event messages
from all accessible adapters */

/* Destroy the explicit message filter */
TBXDestroyMsgFilter (in hLib, hFilter);

/* At this point, hFilter should not be used anymore */

2.5 Code example #2: Create an explicit message filter to retrieve
response messages from a specific adapter

Here is a code example showing how to create an explicit message filter to retrieve response messages from a specific
adapter:

TBX RESULT API APIResult;
TBX FILTER PARAMS aFilterParams [1];
TBX FILTER HANDLE hFilter;

/* in hLib is returned by TBXOpenLib call */
/* in hAdapter is returned by TBXGetAdaptersList call */

/* Create an explicit message filter to retrieve all event messages from all

accessible adapters */
aFilterParams[0] .un32StructVersion = 1;

Copyright © 2002-2008 by TelcoBridges inc. Page 19

TB640 User's guide CONFIDENTIAL 9000-00002-2H

aFilterParams[0] .FilterMask =

(TBX FILTER ADAPTER HANDLE | TBX FILTER MSG TYPE);
aFilterParams[0] .hAdapter = in hAdapter;
aFilterParams[0] .MsgTypeMask = TBX MSG TYPE RESPONSE;
APIResult = TBXCreateMsgFilter (

in hLib,

(sizeof (aFilterParams) / sizeof (TBX FILTER PARAMS)),

&hFilter);

/* At this point, hFilter could be used as argument by TBXReceiveMsg,
TBXWaitMsg and TBXFlushMsgs calls to retrieve response messages from the
specified adapter */

/* Destroy the explicit message filter */
TBXDestroyMsgFilter (in hLib, hFilter);

/* At this point, hFilter must not be used anymore */

2.6 Code example #3: Send request message to attach specific
adapter (explicit filtering method)

Here is a code example showing how to send request message to attach specific adapter that do not use the automatic
implicit filtering creation (explicit filtering method):

TBX RESULT API APIResult;
TBX_MSG_HANDLE hMsg;
TBX_REQ ADAPTER OP ATTACH * pRequestAttach;

/* in hLib is returned by TBXOpenLib call */

/* in hAdapter is returned by TBXGetAdaptersList call */

/* in pUserContext is a user defined field that can be used to match response
and request messages when using explicit message filtering */

if (TBX RESULT SUCCESS(APIResult))
{
/* Get message buffer */
APIResult = TBXGetMsg (
in hLib,
sizeof (TB640 MSG ADAPTER OP ATTACH),
&hMsg) ;

}

if | TBX RESULT SUCCESS(APIResult))
{
/* Initialize message header */
TBX_FORMAT MSG_HEADER (
hMsg,
TB640 MSG ID ADAPTER OP ATTACH,
TBX MSG TYPE REQUEST,
Sizeof (TB640 MSG_ADAPTER OP ATTACH)

Page 20 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

in hAdapter,
in pUserContext,
0);

/* Set the message payload */
pPRequestAttach =

(PTB640 REQ CONN OP ATTACH)TBX MSG PAYLOAD POINTER(hMsg);
pRequestAttach->un32MsgVersion = 1;
pPRequestAttach->un32KeepAliveTimeoutSec = 1;
PRequestAttach->fEnableAutoReattach = TBX TRUE;

/* Send the attach request to specific adapter. Note that the last
argument is NULL. This call will NOT return handle on an implicit filter.
An explicit filter created with TBXCreateMsgFilter call must be used to
retrieve the response. */
Result = TBXSendMsg (

in hLib,

&hMsg,

NULL) ;

/* At this point, the application can use TBXReceiveMsg, TBXWaitMsg and

TBXFlushMsg calls to handle the response message. An explicit filter must
have been created before sending the request. */

2.7 Code example #3: Send request message to attach specific
adapter (implicit filtering method)

Here is a code example showing how to send request message to attach specific adapter that use the automatic implicit
filtering creation (implicit filtering method):

TBX RESULT API APIResult;

TBX_MSG_HANDLE hMsg;
TB640 REQ ADAPTER OP ATTACH * pRequestAttach;
TBX_FILTER HANDLE hFilter;

/* Initialize local variables */
hFilter = 0;

/* in hLib is returned by TBXOpenLib call */
/* in hAdapter is returned by TB640GetAdaptersList call */

if (TBX RESULT SUCCESS(APIResult))
{
/* Get message buffer */
APIResult = TBXGetMsg (
in hLib,
sizeof (TB640 MSG ADAPTER OP ATTACH),
&hMsg) ;
}

if (TBX RESULT SUCCESS(APIResult))

Copyright © 2002-2008 by TelcoBridges inc. Page 21

TB640 User's guide CONFIDENTIAL 9000-00002-2H

/* Initialize message header */
TBX_FORMAT MSG_HEADER (

hMsg,

TB640 MSG_ID ADAPTER OP ATTACH,

TBX MSG_TYPE REQUEST,

Sizeof (TB640 MSG ADAPTER OP ATTACH)

in hAdapter,

0,

0):

/* Set the message payload */
pRequestAttach =

(PTB640_REQ CONN OP ATTACH) TBX MSG PAYLOAD POINTER(hMsg);
pRequestAttach->un32MsgVersion = 1;
pRequestAttach->un32KeepAliveTimeoutSec = 1;
PRequestAttach->fEnableAutoReattach = TBX TRUE;

/* Send the attach request to specific adapter. Note that the last
argument is non NULL. This call will return handle on an implicit filter.
This filter can be used to retrieve the response to this request. */
APIResult = TBXSendMsg (

hLib,

&hMsg,

&hFilter);

/* At this point, the application can use TBXReceiveMsg, TBXWaitMsg and
TBXFlushMsg calls with the implicit hFilter filter to handle the response
message. */

if (hFilter != 0)
{

/* Destroy the implicit message filter */
TBXDestroyMsgFilter (in hLib, hFilter);

2.8 Code example #4: Receive response message

Here is a code example showing how to use implicit or explicit filter to retrieve response message:

TBX RESULT API APIResult;
TB640 RESULT Result;
TBX MSG HANDLE MsgHandle;

TBX_ MSG_ADAPTER OP ATTACH * pMsgAttach;
TBX_RSP_ADAPTER OP ATTACH * pResponseAttach;

/* in hLib is returned by TBXOpenLib call */
/* in hFilter is returned by TBXCreateMsgFilter call */

Page 22 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

/* Use implicit filter returned by TBXSendMsg call or explicit filter created
with TBXCreateMsgFilter call to retrieve response message. Call blocks for
maximum 5 second and will return as soon as a response message match the
characteristics of the filter. Consider that the explicit filter has been
created to trig on response type of messages */
APIResult = TBXReceiveMsg (

in hLib,

in hFilter,

5000,

&hMsg) ;

if | TBXiRESULTisUCCESS(APIResult))
{
/* Log message identification information */
printf (“Adapter handle = $X\n”, TBX MSG ADAPTER HANDLE GET(hMsg));
printf (“Message type = %d\n”, TBX MSG TYPE GET(hMsg));
printf (“Message ID = %d\n”, TBX MSG ID GET(hMsg));
printf (“Serial number = %$X\n”, TBX MSG_SERIAL NUMBER GET(hMsg));
printf (“User contextl = %X\n”, TBX MSG USER CONTEXT1 GET(hMsg));
printf (“User context2 = %X\n”, TBX MSG USER CONTEXT2 GET(hMsg));
printf (YPayload length = %d\n”, TBX MSG PAYLOAD LENGTH GET(hMsg));
printf (“Payload maximum length = %d\n”,
TBX MSG PAYLOAD LENGTH GET(hMsg));
printf (“Payload pointer = %$X\n”, TBX MSG PAYLOAD POINTER(hMsg));

switch (TBX MSG ID GET(hMsg))

{
case TB640 MSG_ID ADAPTER OP ATTACH:

{
/* Retrieve the message payload */
pResponseAttach = (PTB640 RSP ADAPTER OP ATTACH)
TB640 MSG PAYLOAD POINTER(hMsg);
Result = pResponseAttach->Result;

if (TBX_RESULT SUCCESS(Result))

{
printf (“SUCCESS: Attach adapter”);

printf (“FAILURE: Attach adapter”);

}

break;

default:

{
printf (“Message with identifier = %X is not handle by this
program.\n”, TBX MSG ID GET (hMsg));

}

/* Release message buffer */
APIResult = TBXReleaseMsqg (
in hLib,

Copyright © 2002-2008 by TelcoBridges inc. Page 23

TB640 User's guide CONFIDENTIAL 9000-00002-2H

hMsg) ;

/* At this point, the hMsg handle must not be used anymore. */

Page 24 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

3 HOST LIBRARIES
3.1 Linking with the HostLibs

Depending on what host you’re running, and what type of libraries you’re using, you will have to link with one of the
following libraries.

Host TBX Host Library Stream Library StreamServer Library
Win32 Multi Threaded tbx.lib streamlib.lib tbstreamserver lib.lib
Win32 Multi Threaded DLL tbx_md.lib streamlib_md.lib | tbstreamserver lib md.lib
Solaris 8/9 libtbxhost.a libtbxstream.a libtbstreamserver.a

3.2 TBX HostLib Debug API

To enable debug functionality, define TBX API DEBUG in your makefile or include "tbx_api_debug.h" instead of
"tbx_api.h"

The API library in debug mode checks validity of every handle given as argument to API calls. In the event an error is
detected, the library prints an error message telling what file and what line number the error was originated.

Copyright © 2002-2008 by TelcoBridges inc. Page 25

TB640 User's guide CONFIDENTIAL 9000-00002-2H

4 INITIALIZATION

First of all, the application can, at anytime, call TBXGetLibInfo to get information about the library. It could be
interesting for the application to get information on the library before starting the initialization sequence. Therefore
TBXGetLibInfo is typically the first call to be done by the application to the API library. Although this call provides
valuable information, it isn’t required to perform other API calls and could be done later or even not at all. The
TBXGetLibInfo call returns the version of the library, the build number, the available transport layer types to
exchange messages with adapters and other information.

Secondly, the application must call TBXOpenLib to initialize the library and get access to other available API calls. At
completion of this call the library starts to monitor available adapters and dispatch messages coming from or sent to the
different adapters. Therefore the application could have messages sent to it. For example, event messages could be sent
to indicate the arrival or departure of adapters. At this point in the initialization sequence, the application can create
message filters with TBXCreateMsgFilter call and start to receive messages with TBXReceiveMsg call. Note that
adapter handles are unknown at this point. Therefore, the message filter cannot specify a particular adapter. Important
things that a filter should detect at this point are TBX MSG_ID_API NOTIF_ADAPTER_ADDED and
REMOVED events. A thread can be started to receive those events with TBXReceiveMsg, using the filter created.

Thirdly, the application can call TBXGetAdaptersList to get the list of available adapters. This function returns you
with a handle for each adapter that are alive and that can be attached to the library. Each of these adapter handles is
unique throughout a system (even with other applications). It is possible to get more information (adapter name, serial
number, slot and shelf id...) on every available adapter by using TBXGetAdapterInfo. At this point in the
initialization sequence, the application can start to receive messages from specific adapters with TBXReceiveMsg call
and send requests to specific adapter with TBXSendMsg call that do not require attachment privilege.

Finally, the application can send a TB640_MSG_ADAPTER_OP_ATTACH message to get full control on specific
adapter. Once attached to the adapter, the application will start receive events sent by the adapter (assuming the
application has allocated filters that match the sent events). When not attached to the adapter, the application can still
send request to the adapter and receive the responses, but will not receive any events sent by the adapter. When
attaching to an adapter, it is the responsibility of the application to properly synchronize with adapter’s resources and
states to recover from dropped events while the application was not attached to the adapter.

By default, the host library will connect to the adapter using network redundancy mode (assuming both Ethernet
interfaces of the adapter are connected). To modify the network redundancy parameters (including disable network
redundancy), the application can call TBXConfigureNetworkRedundancy. The host library will send events type
TBX MSG ID API NOTIF ADAPTER ETH [UP/DOWN] to keep the application informed of Ethernet ports
availability. At any time, the application can call the function TBXGetNetworkRedundancyState to query the network
redundancy state.

4.1 Code example #5: Initialize the library and attach specific adapter
using the implicit filter

Here is a code example showing how to initialize the library and attach the first adapter of the adapters list using the
implicit filter to retrieve response message in synchronous like behavior:

#define ADAPTER MAX COUNT 16

TBX RESULT API APIResult;
TB640 RESULT AttachResult;

Page 26 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL

TBX LIB INFO LibInfo;

TBX LIB PARAMS LibParams;

TBX LIB HANDLE hLib;

TBX UINT unAdapterHandleCount;

TBX ADAPTER HANDLE ahAdapter [ADAPTER MAX COUNT];
TBX ADAPTER HANDLE hAdapter;

TBX FILTER HANDLE hFilter;

TBX_MSG_HANDLE hMsg;

TBX REQ ADAPTER OP ATTACH * pRequestAttach;
TBX RSP _ADAPTER OP ATTACH * pPResponseAttach;
TBX UINT unIndex;

/* Initialize local variables */
hFilter = 0;

/* Get library information */
LibInfo.ui32StructVersion = 1;
APIResult = TBXGetLibInfo (&LibInfo);
if | TBX_RESULT_SUCCESS(APIResult))
{
/* Print library information */
printf(“Library Version %d.%d.%d, Build number %d\n”,
LibInfo.Version.un8Major,
LibInfo.Version.un8Minor,
LibInfo.Version.unl6PatchLevel,
LibInfo.Version.un32BuildNumber) ;
printf (“Ethernet transport is %s\n”,
LibInfo.Transport & TBX TRANSPORT ETHERNET ?
“available” : “not available”);

/* Set library parameters */

LibParams.un32StructVersion = 1;
LibParams.un32AutoDetectionDelayMin = 500;
LibParams.un32WatchdogTimeoutSec = 0;
LibParams.MsgRxThreadPrio = TBX MSG RX THREAD PRIO HIGHER;
LibParams.un32SendFifoSize = TBX SEND FIFO SIZE DEFAULT;

if (LibInfo.Transport & TBX TRANSPORT ETHERNET)

/* Use Ethernet to transport messages */
LibParams.Transport = TB640 TRANSPORT ETHERNET;

/* No transport is available or unknown transport type
APIResult = TBX RESULT FAIL;

if (TBX RESULT SUCCESS(APIResult))

{
/* Open library */
APIResult = TBXOpenLib(&LibParams, &hLib);

Copyright © 2002-2008 by TelcoBridges inc.

*/

TB640 User's guide

Page 27

TB640 User's guide CONFIDENTIAL 9000-00002-2H

if (TBX RESULT SUCCESS(APIResult))

{
/* At this point in the initialization sequence, the application can
create message filters using the TBXCreateMsgFilter call that do not
specify the adapter and start to receive messages from all adapters with
TBXReceiveMsg call. */

/* Get adapters list */
APIResult = TBXGetAdaptersList (
hlLib,
ADAPTER MAX COUNT,
&unAdapterHandleCount,
&ahAdapter[0]);

if (unAdapterHandleCount == 0)

{
/* No adapter found */
APIResult = TBX RESULT FATL;

}

if (TBX RESULT SUCCESS(APIResult))
{
/* At this point in the initialization sequence, the application can
scan the adapters list and retrieve information for each adapter (name,
serial number, slot and shelf id..) to select a specific adapter. */
for (unIndex = 0; unIndex < ADAPTER MAX COUNT; unIndex++)
{
APIResult = TBXGetAdapterInfo (hLib, ahAdapter [unIndex],

&AdapterInfo) ;
if (TBX RESULT SUCCESS (APIResult) &&
(strcmp (AdapterInfo.szAdapterName, “TB00”) == 0))

/* The adapter has been found. */
hAdapter = ahAdapter [unIndex];
break;

}

if (unIndex == ADAPTER MAX COUNT)
{
/* Adapter not found */
result = TBX_ RESULT API_NOT FOUND;

}

if (TBX_RESULT SUCCESS(APIResult))
{
/* Get message buffer */
APIResult = TBXGetMsg (
hLib,
sizeof (TB640 MSG_ADAPTER OP ATTACH),
&hMsg) ;

Page 28 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

if (TBX RESULT SUCCESS(APIResult))

{
/* At this point in the initialization sequence, the application can
create message filters with TBXCreateMsgFilter call and start to receive
messages from specific adapter or all adapters with TBXReceiveMsg call.
The application can also send requests to specific adapter that do not
require attachment privilege. */

/* Get message buffer */
APIResult = TBXGetMsg (
hLib,
sizeof (TB640 MSG_ADAPTER OP ATTACH),
&hMsg) ;
}

if (TBX RESULT SUCCESS(APIResult))
{
/* Initialize message header */
TBX FORMAT MSG HEADER (
hMsg,
TB640 MSG ID ADAPTER OP ATTACH,
TBX_MSG_TYPE REQUEST,
Sizeof (TB640 MSG ADAPTER OP ATTACH)
hAdapter,
0,
0)s

/* Set the message payload */

pRequestAttach = (PTB640 REQ ADAPTER OP ATTACH)
TBX_MSG_PAYLOAD POINTER(hMsg);

pRequestAttach->un32MsgVersion = 1;

pPRequestAttach->un32KeepAliveTimeoutSec = 1;

pRequestAttach->fEnableAutoReattach = TBX TRUE;

/* Send the attach message to first adapter in the list. Note that the
last argument is non NULL. This call will return handle on an implicit
filter. This filter can be used to retrieve the response to this request.
*/
APIResult = TBXSendMsg (

hlLib,

hAdapter,

&hMsg,

&hFilter);

}

/* Insert code here for the operations to be done in parallel */
/* Multi-threading is recommended to obtain best performance and take full
advantage of the asynchronous capabilities */

if (TBX RESULT SUCCESS(APIResult))
{

/* Use implicit filter returned by TBXSendMsg call to retrieve response
message. Call blocks for maximum 5 second. */
APIResult = TBXReceiveMsqg (

hLib,

Copyright © 2002-2008 by TelcoBridges inc. Page 29

TB640 User's guide CONFIDENTIAL 9000-00002-2H

hFilter,
5000,
&hMsg) ;

}

if (TBX RESULT SUCCESS(APIResult))
{
/* Retrieve the message payload */
pResponseAttach = (PTB640 RSP ADAPTER OP ATTACH)
TBX MSG PAYLOAD POINTER(hMsg);
AttachResult = pResponseAttach->Result;

if (TBX RESULT SUCCESS(AttachResult))

{
printf (“SUCCESS: Attach adapter\n”);

printf (“FAILURE: Attach adapter\n”);
}

/* Release message buffer */
APIResult = TBXReleaseMsqg (
hLib,
hMsg) ;
}

if (hFilter != 0)
{
/* Destroy the implicit message filter */
TBXDestroyMsgFilter (in hLib, hFilter);
}

/* At this point in the initialization sequence, the application can create
message filters with TBXCreateMsgFilter call and receive messages from specific
adapter or all adapters with TBXReceiveMsg call. The application can also send
requests to specific adapter without any restriction for the attached adapter.

*/

4.2 Code example #6: Un-initialize the library and detach specific
adapter using the implicit filter

Here is a code example showing how to un-initialize the library and detach a specific adapter using the implicit filter to
retrieve response message in synchronous like behavior:

TBX RESULT API APIResult;
TB640 RESULT DetachResult;
TBX_MSG_HANDLE hMsg;

TBX FILTER HANDLE hFilter;

Page 30 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

TB640 REQ ADAPTER OP DETACH * pRequestDetach;
TB640 RSP _ADAPTER OP DETACH * pResponseDetach;

/* Initialize local variables */
hFilter = 0;

/* in hLib is the library handle returned by TBXOpenLib call
in hAdapter is an adapter handle returned by TBXGetAdaptersList call */

/* Get message buffer */

APIResult = TBXGetMsg (
in hLib,
sizeof (TB640 MSG ADAPTER OP DETACH),
&hMsg) ;

if (TBX RESULT SUCCESS(APIResult))
{
/* Initialize message header */
TBX FORMAT MSG HEADER (
hMsg,
TB640 MSG_ID ADAPTER OP DETACH,
TBX_MSG_TYPE REQUEST,
Sizeof (TB640 MSG ADAPTER OP DETACH)
in_ hAdapter,
0,
0) 7

/* Set the message payload */

pRequestDetach = (PTB640 REQ ADAPTER OP DETACH)
TBX MSG_PAYLOAD POINTER(hMsg);

pRequestDetach->un32MsgVersion = 1;

/* Send the attach message to first adapter in the list. Note that the
last argument is non NULL. This call will return handle on an implicit
filter. This filter can be used to retrieve the response to this request.

*/
APIResult = TBXSendMsg (
in hLib,
&hMsg,
&hFilter);
}

/* Insert code here for the operations to be done in parallel */

/* Multi-threading is recommended to obtain best performance and take full

advantage of the asynchronous capabilities */

if (TBX RESULT SUCCESS(APIResult))
{

/* Use implicit filter returned by TBXSendMsg call to retrieve response

message. Call blocks for maximum 5 second. */
APIResult = TBXReceiveMsg (

in hLib,

hFilter,

5000,

Copyright © 2002-2008 by TelcoBridges inc.

Page 31

TB640 User's guide CONFIDENTIAL 9000-00002-2H

&hMsg) ;
}

if (TBX RESULT SUCCESS(APIResult))
{
/* Retrieve the message payload */
pResponseDetach =
(PTB640 RSP _ADAPTER OP DETACH)TBX MSG PAYLOAD POINTER(hMsg);
DetachResult = pResponseDetach->Result;

if (TBX RESULT SUCCESS(DetachResult))

{
printf (“SUCCESS: Detach adapter\n”);

printf (“FAILURE: Detach adapter\n”);
}

/* Release message buffer */
APIResult = TBXReleaseMsqg (
in hLib,
hMsg) ;
}

if (hFilter != 0)
{
/* Destroy the implicit message filter */
TBXDestroyMsgFilter (in hLib, hFilter);
}

if (TBX RESULT SUCCESS(APIResult))

{
/* Close library */
APIResult = TBXCloseLib(in_ hLib);

Page 32 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

5 LINE INTERFACES / SERVICES

This section gives an overview and examples on how to allocate trunks using the new APIs. Theses
APIs will be available on all TelcoBridges Inc. products including TB640 boards. The new APIs
are available starting from the Release 93.

Using the New APIs, The allocation of a trunk requires at least two steps. The first step is the
allocation of the trunk’s (Line Service) parent and the second step is the trunk (Line Service)
allocation. For example, on TB640 board, to allocate an E1 trunk, we must allocate a line interface
of type E1 then allocate the trunk itself. It should be noted, that the legacy APIs trunk allocation are
supported but we strongly recommend using the new APIs to allocate the trunks.

Please note, that the term trunk and Line Service are used interchangeably in this document.

5.1 Line Interfaces

Each line interface is associated with a physical interface and it describes parameters like encoding,
payload type, Line Length and other properties specific to this interface.

The line interfaces are the parents of the line services and must be allocated first. The table below
depicts all line interfaces and theirs payload types.

IntLelr“fzce Valid Index Payload Type | TB640-DS3 Ts];?\‘ﬁ- TB640
STM1_OPT 0-1 AU3/AU4 \
0C3 0-1 STS3 V
DS3 0-2 DS3 \
Tl 0-63 Tl \
El 0-63 El \
J1 0-63 J1 N

Table 1 Line interfaces

The following figures demonstrate the hierarchy between the line interfaces and underlying line
services (covered in section 5.2). Figure 6 shows an example of a TB640-STM1 blade configured
for an SDH optical network. Figure 7 shows an example of a TB640-STM1 blade configured for a
SONET optical network. Figure 8 shows an example of a TB640-DS3 blade configuration and
Figure 9 shows an example of a TB640 blade configuration. Note that these figures are examples
and do not cover all configuration setups that are possible with the TelcoBridges’ products.

Copyright © 2002-2008 by TelcoBridges inc. Page 33

TB640 User's guide CONFIDENTIAL 9000-00002-2H

STM-1
Adapter
Fiber #0

STM1_OPT
#0

Line Interface

VC11/VC12/
DS3
Line Services

T1/E1/I1
Line Services

* The index is always relative to the parent

Figure 6 TB640-STM1 Line Interfaces/Services Tree (SDH configuration)

STM-1

Adapter
Fiber #0

Line Interface #0

STSA1
Line Services——»
VT1.5/VT2/

DS3 .o oo DS3
Line Services #0
T1/E1/I1 .o

Line Services

* The index is always relative to the parent

Figure 7 TB640-STM1 Line Interfaces/Services Tree (SONET configuration)

Page 34 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

DS3
Adapter

Line
Interfaces

DS3
Line Services

T1/E1/I1
Line Services

Figure 8 TB640-DS3 Line Interfaces/Services Tree

TB640
Adapter

T1 Line

Interfaces T1 #0 T1 #32 T1 #63
™

Line Services

Figure 9 TB640 Line Interfaces/Services Tree

Copyright © 2002-2008 by TelcoBridges inc. Page 35

TB640 User's guide CONFIDENTIAL 9000-00002-2H

5.1.1 Allocate a Line Interface

Here is a code example showing how to allocate DS3 line interface. An implicit filter is used to retrieve response
message synchronously:

TBX RESULT API APIResult;

TBX RESULT AllocResult;
TBX MSG HANDLE hMsg;

TBX FILTER HANDLE hFilter;

TB640_ LSM HANDLE hLineInterface;

TB640 REQ LINE INTERFACE OP ALLOC* pRequestAlloc;
TB640 RSP LINE INTERFACE OP ALLOC* pResponseAlloc;
PTB640 DS3 LINE INTERFACE CFG pLiDS3Cfg;

/* Initialize local variables */

hFilter = 0;

/* in hLib is the library handle returned by TBXOpenLib call
in hAdapter is an adapter handle returned by TBXGetAdaptersList call
in LineInterfacelIndx is the line interface interface index to be allocated*/

/* Get message buffer */

APIResult = TBXGetMsg (
in hLib,
sizeof (TB640 MSG LINE INTERFACE OP ALLOC),
&hMsg) ;

if | TBX RESULT SUCCESS(APIResult))
{
/* Initialize message header */
TBX FORMAT MSG_HEADER (
hMsg,
TB640 MSG ID LINE INTERFACE OP ALLOC,
TBX MSG TYPE REQUEST,
sizeof (PTB640 MSG LINE INTERFACE OP ALLOC),
in_ hAdapter,
0,
0)s

Page 36 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

/* Set the message payload */

pRequestAlloc = (PTB640 REQ LINE INTERFACE OP ALLOC)

TBX MSG PAYLOAD POINTER(hMsgqg) ;

/* Fill the request */

pRequestAlloc->un32MsgVersion = 1;
pRequestAlloc->LineInterfaceCfg.un32LineInterfacelndex =

in LineInterfaceIndx;

pRequestAlloc->LineInterfaceCfg.Type =
TB640 LINE INTERFACE TYPE DS3;

pLiDS3Cfg = &pRequestAlloc->LinelInterfaceCfg.Cfg.DS3;
pLiDS3Cfg->Encoding = TB640 DS3 LINE INTERFACE ENCODING B3ZS;
pLiDS3Cfg->Linelength = TB640 LINE INTERFACE LENGTH SHORT;
pLiDS3Cfg->PayloadType TB640 DS3 LINE INTERFACE PYLD TYPE DS3;

/* Send the allocation message to single adapter. Note that the last argument
is non NULL. This call will return a handle on an implicit filter. This filter
can be used to retrieve the response to this request. */
APIResult = TBXSendMsg (

in hLib,

hMsg,

&hFilter);
}

/* Insert code here for the operations to be done in parallel */
/* Multi-threading is recommended to obtain best performance and take full
advantage of the asynchronous capabilities */

if (TBX RESULT SUCCESS(APIResult))
{
/* Use implicit filter returned by TBXSendMsg call to retrieve response
message. Call blocks for maximum 5 second. */
APIResult = TBXReceiveMsqg (
in hLib,
hFilter,
5000,
&hMsg) ;
}

if (TBX RESULT SUCCESS(APIResult))

{

/* Retrieve the message payload */

pPResponseAlloc = (PTB640 RSP LINE SERVICE OP ALLOC)
TBX_MSG_PAYLOAD POINTER(hMsg);

AllocResult = pResponseAlloc->Result;

hlLineInterface = pResponseAlloc-> hlLinelInterface;

if (TBX RESULT SUCCESS(AllocResult))

{
printf ("SUCCESS: Allocation of line interface\n");

}

else

{
printf ("FAILURE: Allocation of line interface\n");

}

Copyright © 2002-2008 by TelcoBridges inc. Page 37

TB640 User's guide CONFIDENTIAL

/* Release message buffer */
APIResult = TBXReleaseMsg (
in hLib,
hMsg) ;
}

if (hFilter != 0)

{
/* Destroy the implicit message filter */
TBXDestroyMsgFilter (in hLib, hFilter);

}

9000-00002-2H

The steps required to allocate T1/E1/J1 line interface is similar to the example shown above except
for the specific line interface configuration parameters. For more information about the line

interface allocation, please refer to HTML/CHM help file

Page 38

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

5.1.2 Free a Line interface

Here is a code example showing how to free previously the implicit filter to retrieve response message synchronously:

TBX_RESULT API APIResult;
TBX_RESULT FreeResult;
TBX_MSG_HANDLE hMsg;

TBX FILTER HANDLE hFilter;

TB640 REQ LINE INTERFACE OP FREE* pRequestFree;
TB640 RSP _LINE INTERFACE OP FREE* pPResponseFree;

/* Initialize local variables */
hFilter = 0;

/* in hLib is the library handle returned by TBXOpenLib call
in hAdapter is an adapter handle returned by TBXGetAdaptersList call
in hLinelInterface is the Line interface handle */

/* Get message buffer */

APIResult = TBXGetMsg (
in hLib,
sizeof (TB640 MSG LINE INTERFACE OP FREE),
&hMsg) ;

if | TBX RESULT SUCCESS(APIResult))
{
/* Initialize message header */
TBX FORMAT MSG HEADER (
hMsg,
TB640 MSG ID LINE INTERFACE OP_FREE,
TBX MSG_TYPE REQUEST,
sizeof (TB640 MSG LINE INTERFACE OP FREE),
in hAdapter,
0,
0)s

/* Set the message payload */

pRequestFree = (PTB640 REQ LINE INTERFACE OP FREE)
TBX_MSG_PAYLOAD POINTER(hMsg);

pPRequestFree->un32MsgVersion = 1;

pPRequestFree->hLineInterface = in hLinelInterface;

/* Send the allocation message to single adapter. Note that the last argument
is non NULL. This call will return a handle on an implicit filter. This filter
can be used to retrieve the response to this request. */
APIResult = TBXSendMsg (

in hLib,

hMsg,

&hFilter);

Copyright © 2002-2008 by TelcoBridges inc. Page 39

TB640 User's guide CONFIDENTIAL 9000-00002-2H

/* Insert code here for the operations to be done in parallel */
/* Multi-threading is recommended to obtain best performance and take full
advantage of the asynchronous capabilities */

if (TBX RESULT SUCCESS(APIResult))
{
/* Use implicit filter returned by TBXSendMsg call to retrieve response
message. Call blocks for maximum 5 second. */
APIResult = TBXReceiveMsqg (
in hLib,
hFilter,
5000,
&hMsg) ;
}

if (TBX RESULT SUCCESS(APIResult))

{

/* Retrieve the message payload */

PResponseFree = (PTB640 RSP LINE INTERFACE OP_ FREE)
TBX_MSG_PAYLOAD POINTER(hMsg);

FreeResult = pResponseFree->Result;

if (TBX RESULT SUCCESS(FreeResult))

{

printf ("SUCCESS: Deallocation of line interface \n");
}

else

{

printf ("FAILURE: Deallocation of line interface\n");
}

/* Release message buffer */
APIResult = TBXReleaseMsg (
in hLib,
hMsg) ;
}

if (hFilter != 0)

{
/* Destroy the implicit message filter */
TBXDestroyMsgFilter (in hLib, hFilter);

Page 40 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

5.2 Line Services

A Line service represents the payload type in a line interface. In addition, this payload can be a
container for other low rate line services. For example, a DS3 line service can be channelized into
T1/E1/]1 line services (previously named trunks).

The parameters that can be described by a line service are the Framing, payload type(if any),
timing, Idle code etc... Please refer to HTML/CHM tb640 Ismgr.h for more information about a
complete list of these parameters. The table below shows all the possible combination of line
services and their parents. It is important to remember that a line service can have another line
service as a parent or a line interface (which represents the physical output of the signal).

Line Service | Valid Index | Payload Type | Parent | Parent type
TB640 blade
T1/J1 0* - T1/J1 Line Interface
El 0* - El Line Interface
DS3 blade
DS3 0* T1/E1/J1 DS3 Line Interface
T1/J1 0-27 - DS3 Line Service
El 0-20 - DS3 Line Service
STM-1 blade in SONET configuration **
STSI1 0-2 VT2/VT15/DS3 0C3 Line Interface
VT2 0-20 E1/T1 STS1 Line Service
VTI15 0-27 T1 STS1 Line Service
DS3 0* T1/E1/J1 STS1 Line Service
T1/J1 0-27 - DS3 Line Service
T1/J1 0 - VT2/VTI15 Line Service
El 0-20 - DS3 Line Service
El 0 - VT2 Line Service
STM-1 blade in SDH configuration ***
VC4 0 VC3/VC12/VCl11 STM1 OPT Line Interface
VC3 0-2 DS3 VC4 Line Service
VC3 0-2 VCI12/VCI11/DS3 STM1 OPT Line Interface
DS3 0* E1/T1/J1 VC3 Line Service
VCI12 0-63 E1/T1/]1 VC4 Line Service
VCI12 0-20 E1/T1/]1 VC3 Line Service
VCI11 0-83 T1/]1 VC4 Line Service
VCI11 0-27 T1/]1 VC3 Line Service
T1/J1 0-27 - DS3 Line Service
T1/1 0 - VC12/VCl11 Line Service
El 0-20 - DS3 Line Service
El 0 - VCI12 Line Service
* Index are relative to the parent’s index
** See Figure 11 for a more explicit diagram of configuration
*** See Figure 10 for a more explicit diagram of configuration

Table 2 Line services and theirs parents

Copyright © 2002-2008 by TelcoBridges inc.

Page 41

TB640 User's guide CONFIDENTIAL 9000-00002-2H

5.2.1 Allocate a line service

Here is a code example showing how to allocate a DS3 line service with a payload type E1. An implicit filter is used to
retrieve response message synchronously:

TBX RESULT API APIResult;

TBX RESULT AllocResult;
TBX_MSG_HANDLE hMsg;

TBX FILTER HANDLE hFilter;

TB640 LSM HANDLE hLineService;
TB640 REQ LINE SERVICE OP ALLOC* pRequestAlloc;
TB640 RSP LINE SERVICE OP ALLOC* pResponseAlloc;
PTB640 DS3 LINE SERVICE CFG pLsDS3Cfy;

/* Initialize local variables */
hFilter = 0;

/* in hLib is the library handle returned by TBXOpenLib call
in hAdapter is an adapter handle returned by TBXGetAdaptersList call
in hLineInterface is the line interface handle handle */

/* Get message buffer */

APIResult = TBXGetMsg (
in hLib,
sizeof (TB640 MSG LINE SERVICE OP ALLOC),
&hMsg) ;

if (TBX RESULT SUCCESS(APIResult))
{
/* Initialize message header */
TBX_FORMAT MSG_HEADER (
hMsg,
TB640 MSG_ID LINE SERVICE OP ALLOC,
TBX MSG_TYPE REQUEST,
sizeof (TB640 MSG LINE SERVICE OP ALLOC),
in hAdapter,
0,
0);

/* Set the message payload */
PRequestAlloc = (PTB640 REQ LINE SERVICE OP ALLOC)
TBX_MSG_PAYLOAD POINTER(hMsg) ;

pRequestAlloc->un64UserContextl = 0x0;

pRequestAlloc->un64UserContext2 = 0x0;
pPRequestAlloc->LineServiceCfg.un32LineServicelIndex = 0;
PRequestAlloc->LineServiceCfg.hParent = in hLineInterface;
pRequestAlloc->LineServiceCfg.Type TB640 LINE SERVICE TYPE DS3;
/*Fill line service configuration structure*/

pLsDS3Cfg= &pRequestAlloc->LineServiceCfg.Cfg.DS3;

Page 42 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

pLsDS3Cfg->fLoopTime = TBX FALSE;

pLsDS3Cfg->PayloadType TB640 DS3 LINE SERVICE PYLD TYPE E1;
pLsDS3Cfg->AISDetAlgo TB640 DS3 LINE SERVICE AIS DET ALGO DEFAULT;
pLsDS3Cfg->00FDetAlgo = TB640 DS3 LINE SERVICE OOF DET ALGO DEFAULT;
pLsDS3Cfg->Framing = TB640 DS3 LINE SERVICE FRAMING CBIT;

/* Send the allocation message to single adapter. Note that the last argument
is non NULL. This call will return a handle on an implicit filter. This filter
can be used to retrieve the response to this request. */
APIResult = TBXSendMsg (

in hLib,

hMsg,

&hFilter);
}

/* Insert code here for the operations to be done in parallel */
/* Multi-threading is recommended to obtain best performance and take full
advantage of the asynchronous capabilities */

if (TBX RESULT SUCCESS(APIResult))
{
/* Use implicit filter returned by TBXSendMsg call to retrieve response
message. Call blocks for maximum 5 second. */
APIResult = TBXReceiveMsqg (
in hLib,
hFilter,
5000,
&hMsg) ;
}

if (TBX RESULT SUCCESS(APIResult))

{

/* Retrieve the message payload */

pResponseAlloc = (PTB640 RSP LINE SERVICE OP ALLOC)
TBX_MSG_PAYLOAD POINTER(hMsg);

AllocResult = pResponseAlloc->Result;

hLineService = pResponseAlloc->hLineService;

if (TBX_RESULT_SUCCESS(AllocResult))

{

printf ("SUCCESS: Allocation of DS3 line service\n");
}

else

{

printf ("FAILURE: Allocation of DS3 line service\n");
}

/* Release message buffer */
APIResult = TBXReleaseMsqg (
in hLib,
hMsg) ;
}

Copyright © 2002-2008 by TelcoBridges inc. Page 43

TB640 User's guide CONFIDENTIAL 9000-00002-2H

if (hFilter != 0)
{

/* Destroy the implicit message filter */
TBXDestroyMsgFilter (in hLib, hFilter);

The steps required to allocate a T1/E1/J1 line services is similar to the example shown above
except for the configuration parameter and parent handle. Please refer to Table 2 for more
information about the line services and theirs parents’ types

Page 44 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

5.2.2 Free aline service

Here is a code example showing how to free previously allocated line service. An implicit filter is used to retrieve
response message synchronously:

TBX RESULT API APIResult;

TBX RESULT FreeResult;
TBX MSG HANDLE hMsg;

TBX FILTER HANDLE hFilter;

TB640 REQ LINE SERVICE OP FREE* pRequestFree;
TB640 RSP _LINE SERVICE OP FREE* pResponseFree;

/* Initialize local variables */
hFilter = 0;

/* in hLib is the library handle returned by TBXOpenLib call
in hAdapter is an adapter handle returned by TBXGetAdaptersList call
in hLineService is the Line interface handle */

/* Get message buffer */

APIResult = TBXGetMsg (
in hLib,
sizeof (TB640 MSG LINE SERVICE OP FREE),
&hMsg) ;

if | TBX RESULT SUCCESS(APIResult))
{
/* Initialize message header */
TBX FORMAT MSG HEADER (
hMsg,
TB640 MSG ID LINE SERVICE OP FREE,
TBX MSG_TYPE REQUEST,
sizeof (TB640 MSG LINE SERVICE OP FREE),
in hAdapter,

0,
0);
/* Set the message payload */
pRequestFree = (PTB640 REQ LINE SERVICE OP FREE)

TBX MSG PAYLOAD POINTER(hMsg);
pRequestFree->un32MsgVersion = 1;
pPRequestFree->hLineService = in hLineService;

/* Send the allocation message to single adapter. Note that the last
argument is non NULL. This call will return a handle on an implicit
filter. This filter can be used to retrieve the response to this request.
*/
APIResult = TBXSendMsg (

in hLib,

hMsg,

&hFilter);

Copyright © 2002-2008 by TelcoBridges inc. Page 45

TB640 User's guide CONFIDENTIAL 9000-00002-2H

/* Insert code here for the operations to be done in parallel */
/* Multi-threading is recommended to obtain best performance and take full
advantage of the asynchronous capabilities */
if (TBX RESULT SUCCESS(APIResult))
{
/* Use implicit filter returned by TBXSendMsg call to retrieve response
message. Call blocks for maximum 5 second. */
APIResult = TBXReceiveMsg (
in hLib,
hFilter,
5000,
&hMsg) ;
}

if (TBX RESULT SUCCESS(APIResult))
{
/* Retrieve the message payload */
pResponseFree = (PTB640 RSP LINE SERVICE OP FREE)
TBX MSG PAYLOAD POINTER(hMsg);
FreeResult = pResponseFree->Result;

if (TBX RESULT SUCCESS(FreeResult))
{

printf ("SUCCESS: Deallocation of line service");

printf("FAILURE: Deallocation of line service");

}

/* Release message buffer */
APIResult = TBXReleaseMsg (
in hLib,
hMsg) ;
}

if (hFilter != 0)

{
/* Destroy the implicit message filter */
TBXDestroyMsgFilter (in hLib, hFilter);

Page 46 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

5.3 SONET and SDH

5.3.1 Mapping of payload within an SDH or SONET framing

The SDH (Synchronous digital hierarchy) standard has been developed in the 80’s as a transport
mechanism able to incorporate already existing transport facilities (such as E1, E1, DS3, etc.) and
allow the transports of multiple data stream (including voice, packets, etc) within the same network
architecture. This architecture is able to transport different rate of framings/protocols and to mix
them into the same envelope while dealing with clocking transport. ~ As part of the standardization
effort, the ANSI standard body (U.S.) and the ITU (European) came to a mutual accommodate
where the SONET (Synchronous optical network) standard from ANSI is considered a subset of the
SDH architecture. However, both standards are only compatible from the STS-1/STM-0 data rate.

Multiple different configurations can be achieved using the TB640-STM1 blade for both SONET
and SDH network. It is not mandatory to actually understand the underlying technologies behind
the SDH/SONET networks to be able to use this interface type as the TB640 is taken care of the
implementation. But, it is recommended understand the basics of framing modes and options to be
able to configure the line interface and line services correctly. Numerous tutorials about SDH
and/or SONET are available from the Internet to quickly learn about these networks.

http://www.iec.org/online/tutorials/sonet/
http://www.iec.org/online/tutorials/sdh/

The TB640-STM1 blade is designed to be a terminal point of a SDH/SONET network (not an
add/drop/mux). This means that all the payload/data contained into the STM1/OC3 is
demultiplexed and dropped to the local TDM bus of the blade. Therefore, it is used in a linear
configuration (by opposition to a ring configuration).

x1 x1
STM1_OPT AuanNCa X3 TUG3 Tuzves X
x3
X7 X7x4
DS3 T1/J1
L
AU3/VC3
E1
X7x3
x7
i x3 x1
Line interface TUG2 TU12/VC12 =
Line service
LS Tutzvett X T4
Implied
mapping
X ruiven =X T

Figure 10 - SDH mapping (ITU G.707)

Copyright © 2002-2008 by TelcoBridges inc. Page 47

http://www.iec.org/online/tutorials/sonet/
http://www.iec.org/online/tutorials/sdh/

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Figure 10 is a simplification of ITU G.707 mapping diagram of data payload into a STM-1
envelope. The yellow and blue rectangles actually show what an application would need to
instantiate in order to achieve a desired SDH framing profile. Although the figure shows all
possible configuration paths, it is unlikely that they’ll all be used for a particular network
interconnection point.

For example, a single STM-1 could contain simultaneously a DS3 frame (containing E1 or T1/J1),
20 Els and 28 T1s. This would lead to the following configuration:

LI STM1_OPT #0
LS VC3 #0
LS DS3 #0
LS E1 #0 - #20
LS VC3 #1
LS VCI12 #0 - #20
LS E1#0
LS VC3 #2
LS VCI1 #0 - #27
LS TI #0

Another example, a single STM-1 could contain simultaneously 84 T1s. This would lead to the
following configuration:

LI STM1_OPT #0

LS VC4 #0
LS VCI1 #0 - #83
LSTI#0
x1 XTx4
0C3 x3 STSA DS3 T1/J1
X7x3
E1
Line interface X7x3 VT2 x1 =
Line service
X7x4 x1
VT1.5 T1/J1

Figure 11 - SONET mapping (GR-253-CORE)

Figure 11 is a simplification of GR-253-CORE mapping diagram of data payload into an OC-3
envelope. The yellow and blue rectangles actually show what an application would need to
instantiate in order to achieve a desired SONET framing profile. Although the figure shows all
possible configuration paths, it is unlikely that they’ll all be used for a particular network
interconnection point.

Page 48 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

For example, a single OC-3 could contain simultaneously a DS3 frame (containing E1 or T1/J1),
20 Els and 28 T1s. This would lead to the following configuration:

LI OC3 #0
LS STS-1#0
LS DS3 #0
LS T1 #0 - #27
LS STS-1#1
LS VT2 #0 - #20
LS E1#0
LS VC3 #2
LS VT1.5#0 - #27
LS TI #0

The SONET mapping, by opposition to the SDH model, cannot map directly all the 84 T1s into the
same frame. They need to be divided in different STS-1 frames in order to insert them into the OC-
3 envelope.

Both SDH and SONET standard have defined different monitoring tools to diagnose the status of
the optical network. Those tools are implemented as alarm notifications and performance
monitoring counters. The counters for both standards (SONET and SDH) are different although
they somehow refer to the same underlying data set. All of these counters and alarms are provided
by the performance monitoring API (tb640 pmalarmmgr.h). Be aware that SONET/SDH has
added new notifications and counters on top of already existing one. This means that a DS3
imbedded into an SONET envelope still have its own alarms and performance monitoring counters
in additions to the SONET specific alarms and counters. Basically, every line interface and line
services have their own set of alarms and counters and should be monitored by an application in
order to retrieve the status. Refer to the CHM/HTML API documentation for more details about
those alarms.

Copyright © 2002-2008 by TelcoBridges inc. Page 49

TB640 User's guide CONFIDENTIAL 9000-00002-2H

5.3.2 Automatic protection switching (APS)

SONET and SDH standards have defined a mechanism to protect the network from physical fiber
problems (unintended disconnection or destruction) and to allow traffic to be redirected to a backup
data path. Multiple configurations are defined for the APS and different modes of operations are
possible.

5.3.2.1 APS configuration parameters

Linear vs ring protection:

The protection scheme differs depending if the equipment is part of a SONET/SDH ring of if it is
used as terminal equipment. For a ring network, the traffic is diverted from the failed data path
toward the opposite direction of the ring through a backup path. Thus, the data can reach its
destination by moving the other way around the ring (refer to Figure 12). Linear topology is
simpler as both equipment are facing each other and decide (mutually or not according to
configuration option) to switch the data traffic on a backup fiber upon detection of a failure. As the
TB640-STM1 is a terminating equipment (not an add/drop/mux), only the linear configuration is
supported.

Add/drop)
Terminate)

Equipment A .
Equipment E
upsiteam downstxgam aup

[A

dojwnstreal pstreal

{ Add/drop Equipment B Equipment C Add/drop)
pstreaUnstre m

Ring tologoly Linear topology

Equipment F

(Terminate

Figure 12 - Linear and ring topology

I1+1, I:n and 1:1

Linear topology leads to different configuration of protection fibers depending on the type of
equipments and their capabilities (see Figure 13). The ‘1+1° configuration means that a
supplementary fiber pair (called the ‘protection channel’) is dedicated to protect the primary fiber
pair (referred to as ‘working channel 1”). Depending of the operation (unidirectional or
bidirectional) and switching configuration (revertive or non-revertive), the data/voice traffic is
redirected to the protection fiber pair in case of problems detected on the primary fiber pair.
Equipment of this type usually can terminate the totality of the SONET/SDH payload content to the

Page 50 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

local network. Some equipment has the capability to support more than one time the
SONET/SDH payload (10 times an STM-1 rate for example) and to terminate it to a local network.
In such product, more than one fiber pair is required in order to transport the payload. For these
system, using a 1+1 redundancy scheme would be too much expensive as there would be a
protection fiber pair for each working channel. For these applications, the ‘1:N’ scheme is used
dedicated the supplementary fiber pair (the protection channel) to protect all of the N working
channels (N=10 in the previous mentioned example). When one of the working channels is in
problem, the voice/data traffic is redirected to the protection fiber pair. As an option, the
protection channel may also transport extra traffic when it is not actively protecting a working
channel (with the consequence of loosing this extra channel when a protection switch is required).
In modular 1:N system, the case where N=1 exists but still behaves as a simplification of a 1:N
system. Thus, extra traffic would be still be allowed providing the hardware platform supports it.

The TB640-STM1 blade supports the STM-1/0OC3 level of transports (155Mbps) in a single fiber.
Since this data rate can contains the complete voice/data payload from the local side of the blade,
the only supported redundancy scheme is 1+1.

() [} Q () (0] (9]
© © T © T ©
£ £ £ = £ =
E E E E E E
(0] (0] () () (] ()
~ [= ~ = ~
Equipment A Equipment C Equipment E
y A
Working . Working ~ Working . Working .
channel 1 Protection channel 1 channel 2 Protection channel 1 Protaction
Equipment B Equipment D Equipment F

{ Terminate
Terminate
Terminate
Terminate
Terminate
Terminate

1+1 1:n 1:1

Figure 13 - 1+1, 1:n and 1:1 APS configurations

Unidirectional vs bidirectional:

This configuration parameter refers to the APS switching protocol established between the two
facing equipment. In a unidirectional operation mode, the equipment that detects a failure on a
working channel no. 1 (let’s assume ‘Equipment B”) requests to the remote equipment (let’s
assume ‘Equipment C’ to drive the signal that specific working channel data to the protection line.

Copyright © 2002-2008 by TelcoBridges inc. Page 51

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Once this request is acknowledged, Equipment B now starts to ‘listen’ to the protection channel but
still drives its signal onto the working channel. This configuration option makes the actual
bidirectional voice/data path to be splitted into two different fibers (TX on working channel 1 and
RX on protection channel). This methodology has the potential of surviving a dual fiber failure as
long as both failures are not in the same directions. That means that Equipment C could later
requests for the working channel 3 to be driven to the protection channel. In such event, the
protection channel would transport working channel 1 in one direction and working channel 3 is
the other direction.

When configured for bidirectional switch-over, the APS protocol will make sure that both direction
of the failed working channel is switched to the protection fiber pair (regardless if one of the
directions is still working). This makes the management of the fiber a little easier as a fiber can
carry (or not) traffic rather than be transporting traffic in a single direction.

The TB640-STM1 supports both of these operation modes per a configuration setting when
allocating the OC3/STM1_OPT line interface.

Revertive vs non-revertive:

This configuration options only specifies if the traffic is automatically switched back to its original
channel once the failure is cleared. When in ‘non-revertive’ mode, the traffic will remain on the
protection fiber until manually switched back or until a failure is detected on the protection fiber
(the failure would need to be of higher priority than any failure already present on the working
channel). That later case would then be considered as yet another protection switching (from the
protection channel to the working channel). In ‘revertive’ mode, the switch-back operation is done
automatically by the system. To avoid creating oscillation situation (where the voice/data is
constantly switched back and forth to the protection channel), a configurable probing period (called
the ‘wait-to-restore’) is applied. If no error occurred during the probing period (which could last
from seconds to hours depending on user configuration), the switch-back will occur.

The TB640-STM1 supports both of these switching modes per a configuration setting when
allocating the OC3/STM1_OPT line interface. This setting applies to both the unidirectional and
bidirectional mode of operations.

Page 52 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

5.3.2.2 How to configure (or not) the APS

Both facing systems needs to exchange data for the APS protocol to work correctly. This
communication link is provided through the use of dedicated bytes in the SONET/SDH framing
called the K1 and K2 bytes. These bytes are only relevant on the protection channel fiber pair.
Thus, to activate the APS mode, the host application needs to do two important tasks:

a. Allocate the working channel as if no protection scheme was used. This means
allocating the OC3/STM1_OPT line interface and any line services required to match
the network configuration.

b. Then, allocate one more line interface as the ‘protection channel’ (this is a configuration
parameter in the line interface configuration structure). No line services is required to
be allocated be allocated. The APS protection protocol is actived once a line interface
configured as the ‘protection channel’.

< [tis NOT possible to allocate any underlying line services to a line interface
configured as the ‘protection channel’.

= Both the ‘working channel’ and ‘protection’ line interfaces need to be configured
with the same APS parameters with the exception of the channel identification
(working or protection) and the BER detection thresholds.

Once both line interfaces are configured, the APS protocol will make sure that the least errored
fiber (or fiber pair when using bidirectional mode) will transport voice/data traffic. A notification
(TB640_MSG_ID LINE INTERFACE NOTIF_APS SWITCH_OVER) is sent toward the host application
every time a protection switch occurs.

5.3.2.3 Causes of a protection switching and associated alarms

New alarms have been introduced in the performance monitoring to inform about the status of the
APS controller. Some of those new APS alarms combined with typical performance monitoring
alarms can trigger a protection switching. Below is a description of the alarms and effect.

Failure name Description

LOS A loss-of-signal error failure on a line interface will trigger a SF (signal
fail) request and possibly initiate a protection switchover/switchback if
not overridden by a higher priority request.

LOF A loss-of-frame error failure on a line interface will trigger a SF (signal
fail) request and possibly initiate a protection switchover/switchback if
not overridden by a higher priority request.

AIS A alarm-indication-signal error failure on a line interface will trigger a SF
(signal fail) request and possibly initiate a protection
switchover/switchback if not overridden by a higher priority request.

APS BYTE This failure is signaled by the APS controller when it detects the
reception of incoherent APS K1/K2 bytes or when these bytes are not
stable according to the specifications.

Copyright © 2002-2008 by TelcoBridges inc. Page 53

TB640 User's guide

CONFIDENTIAL 9000-00002-2H

APS_CH_MIS

The APS channel mismatch error is signaled when the APS controller
detects an incoherence between the requested channel to be driven to the
protection line and the actual status reported by the remote end. i.e. the
remote end is not driving what the local end is expecting.

APS MODE_MIS

The APS controller has detected that the remote end is configured in
unidirectional mode but the local end is configured as bidirectional. The
local end will temporarily switch to unidirectional mode. Although the
system is designed to work in this condition, it is highly recommended to
fix the setup configuration.

APS_FE

The APS controller sees the remote is reporting a SF (signal fail) error on
the protection channel. This means that the protection line TX fiber is
non-functional (thus the APS protocol is not able to pass correctly). This
will trigger a SF (signal fail) request on the protection channel and
possibly initiate a protection switch-back if not overridden by a higher
priority request.

APS_BER_SD

The APS controller has detected a bit-error-rate higher than the SD
threshold configured on the line interface. This will trigger a SD (signal
defect) request and possibly initiate a protection switchover/switchback if
not overridden by a higher priority request.

APS BER SF

The APS controller has detected a bit-error-rate higher than the SF
threshold configured on the line interface. This will trigger a SF (signal
fail) request and possibly initiate a protection switchover/switchback if
not overridden by a higher priority request.

Table 3- APS affecting failures/alarms

These alarms/failures will generate APS requests to the APS controller. Each request is assigned a
priority and a channel identification. Based on the priority and the channel id (the lowest channel
ID has the priority), a new request can take precedence over an existing one and trigger a switch-
over (or a switch-back). The simplest example is a working channel with a bit error rate above the
configured SD threshold. This will generate an SD request and trigger a protection switch to the
protection channel. However, if a LOS condition occurs on the protection channel, this will trigger
a SF request which will take precedence on the actual request and will trigger a switch-back to the
working channel. Thus, the APS controller will choose the least errored channel to carry the

voice/data traffic.

APS request

Priority Description

Lockout of protection

15 (highest) | This manual request is used to prevent any switchover to
take place. If a protection switchover was already active,
the voice/data will be switched-back to the working
channel regardless of its state as this request is the highest
priority. This request is available only through a shell
command for debugging purposes.

Forced switch

14 This manual request is used force a switchover to the
protection line. This request is available only through a
shell command for debugging purposes.

SF — Low priority

12 This request indicates a ‘signal fail” condition on a specific

Page 54

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

CONFIDENTIAL TB640 User's guide

channel. It is triggered automatically by the APS
controller upon detection of a failure condition and is also
available through a shell command for debugging
purposes.

SD — Low priority

10

This request indicates a ‘signal defect’ condition on a
specific channel. It is triggered automatically by the APS
controller upon detection of a failure condition and is also
available through a shell command for debugging
purposes.

Manual switch

This manual request is do a switchover to the protection
line. This request is available only through a shell
command for debugging purposes.

Wait to restore

This request is an internal state of the APS controller
reached when configured in revertive mode and only when
all error conditions have been cleared. This request stays
active until a configurable probing period is reached.

Reverse request

This request is an internal state of the APS controller
reached when configured in bidirectional mode only. It is
sent on the APS communication channel to instruct the
remote end to apply the same switchover/switchback as it
has sent.

Do not revert

This request is an internal state of the APS controller
reached when configured in non-revertive mode and only
when all error conditions have been cleared. It instructs
the remote end to keep the current switching state.

No request

0 (lowest)

This is the NULL request that is transmitted when no
channel is being currently protected.

Copyright © 2002-2008 by TelcoBridges inc.

Table 4 - APS requests and priorities

Page 55

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6 RESOURCES

Two different types of resources exist in the TelcoBridges family of adapters, voice processing resources and channel
resources. Resources can be classified into four broad categories defined by two basic attributes. The first one indicates
whether the voice streams flow through the resource block. The second one indicates whether the resource is half or
full duplex (bidirectional). With these two attributes, we can create four categories that describe the resource.

Half duplex resource <:| Half duplex resource
Non flow through Non flow through

Half duplex resource C:
Flow through |:‘> Flow through <:|

Full duplex resource
Non flow through

Flow through

bl 0l

Full duplex resource |:>

Figure 14: All resource categories

6.1 Channel Resources

Channel resources are used to select and configure input/output channels of the adapter. Contrarily to the voice
processing resources, channel resources are not automatically allocated by the adapter. They must be allocated by the
application on a channel per channel basis. The main exception to this is when the adapter signaling facilities are used.
In this case, the signaling module will allocate a channel as a part of its signaling process and will return it to the
application. Channels allocated by the signaling component must not be freed by the application; the adapter will free
them as part of the teardown procedure. As channel resources are end points, they cannot be of type flow through, but
they can be half or full duplex.

Page 56 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

6.1.1 Trunk resources/Line Service Resources

Every trunk channel or pair of channels can be seen as a single resource that can be allocated and connected with any
type of resources available on the adapter. The trunk channel resources are end points resources and therefore they are
non flow through resources (the other side of the resource being the physical connection to the network equipment). It
is possible to allocate trunk resources in full duplex mode.

|:> Full duplex resource

<:| Non flow through

Figure 15: Trunk resource categories

Trunk timeslot allocations are different for E1 and T1/J1. One TB640 adapter can have 16 to 64 trunks, with each of
these trunks having 24 to 31 timeslots.
e For El, timeslots are allocated starting from 1 and ending at 31. If an ISDN stack is allocated, timeslot 16 is
reserved for signaling information.
e For Tl and J1, timeslots are allocated starting at 1 and ending at 24. If an ISDN stack is allocated, timeslot 24
is reserved for signaling information.
CAS does not affect timeslot allocation as the signaling information is passed inband.
SS7 channel assignation will block usage of timeslots (timeslots carrying SS7 information are configurable at runtime).
So the application can allocate, for example, trunk 5, timeslot 29 as a resource that can be used in an ISDN or CAS call
and connect the same resource to other trunk/timeslots, H.110 bus or other voice processing resources.

E1, no ISDN

E1 with ISDN
0123455739‘:‘;1;‘;‘;5?3%% ISDN signaling
channels

T1 with ISDN
Figure 16: TB640 trunk timeslot allocation

Copyright © 2002-2008 by TelcoBridges inc. Page 57

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.1.1.1 Code example #7: Allocate trunk resource using the implicit filter

Here is a code example showing how to allocate trunk resource using the implicit filter to retrieve response message
synchronously:

TBX RESULT API APIResult;
TB640 RESULT AllocResult;
TBX_MSG_HANDLE hMsg;

TBX FILTER HANDLE hFilter;
TB640 RESOURCE HANDLE hTrunkRes;

PTB640 REQ LINE SERVICE RES ALLOC * pRequestAlloc;
PTB640 REQ LINE SERVICE RES ALLOC* pResponseAlloc;

/* Initialize local variables */
hFilter = 0;

/* in hLib is the library handle returned by TBXOpenLib call

in hAdapter is an adapter handle returned by TBXGetAdaptersList call
in hLineService is the trunk handle

in unTimeSlot is the time slot number */

/* Get message buffer */

APIResult = TBXGetMsg (
in hLib,
sizeof (TB640 MSG LINE SERVICE RES ALLOC),
&hMsg) ;

if | TBX RESULT SUCCESS(APIResult))
{
/* Initialize message header */
TBX FORMAT MSG_ HEADER (
hMsg,
TB640 MSG ID LINE SERVICE RES ALLOC,
TBX MSG TYPE REQUEST,
Sizeof (TB640 _MSG LINE SERVICE RES OP ALLOC)
in hAdapter,
0,
0)s

/* Set the message payload */
pPRequestAlloc = (PTB640 REQ LINE SERVICE RES ALLOC)

TBX MSG_PAYLOAD POINTER(hMsgqg) ;
pRequestAlloc->un32MsgVersion = 1;
pRequestAlloc->LineServiceResParams.hLineService = in hLineService;
PRequestAlloc->LineServiceResParams.un32TimeSlot in unTimeSlot;

Page 58 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

}

/* Send the allocation message to single adapter. Note that the last
argument is non NULL. This call will return a handle on an implicit
filter. This filter can be used to retrieve the response to this request.
*/
APIResult = TBXSendMsg (

in hLib,

in hAdapter,

&hMsg,

&hFilter);

/* Insert code here for the operations to be done in parallel */
/* Multi-threading is recommended to obtain best performance and take full
advantage of the asynchronous capabilities */

if

{

}

if

{

if

{

(TBX RESULT SUCCESS(APIResult))

/* Use implicit filter returned by TBXSendMsg call to retrieve response
message. Call blocks for maximum 5 second. */
APIResult = TBXReceiveMsqg (

in hLib,

hFilter,

5000,

&hMsg) ;

(TBX RESULT SUCCESS(APIResult))

/* Retrieve the message payload */

pResponseAlloc = (PTB640 RSP LINE SERVICE RES ALLOC)
TBX_MSG_PAYLOAD POINTER(hMsg);

AllocResult = pResponseAlloc->Result;

hTrunkRes = pResponseAlloc->hLineServiceRes;

if (TBX RESULT SUCCESS(AllocResult))
{

printf (“SUCCESS: Allocation of trunk channel resource\n”);

printf (“FAILURE: Allocation of trunk channel resource\n”);

}

/* Release message buffer */
APIResult = TBXReleaseMsg (
in hLib,
hMsg) ;

(hFilter !'= 0)

/* Destroy the implicit message filter */
TBXDestroyMsgFilter (in hLib, hFilter);

Copyright © 2002-2008 by TelcoBridges inc. Page 59

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.1.1.2 Code example #8: Free trunk resource using the implicit filter

Here is a code example showing how to free trunk resource using the implicit filter to retrieve response message
synchronously:

TBX RESULT API APIResult;
TB640 RESULT AllocResult;
TBX MSG_HANDLE hMsg;

TBX FILTER HANDLE hFilter;

PTB640 REQ LINE SERVICE RES FREE * pRequestFree;
PTB640 RSP LINE SERVICE RES FREE * pResponseFree;

/* Initialize local variables */
hFilter = 0;

/* in hLib is the library handle returned by TBXOpenLib call
in hAdapter is an adapter handle returned by TBXGetAdaptersList call
in hLineServiceRes is the trunk channel resource handle */

/* Get message buffer */

APIResult = TBXGetMsg (
in hLib,
sizeof (TB640 MSG LINE SERVICE RES FREE),
&hMsg) ;

if | TBX RESULT SUCCESS(APIResult))
{
/* Initialize message header */
TBX FORMAT MSG HEADER (
hMsg,
TB640 MSG ID LINE SERVICE RES FREE,
TBX MSG_TYPE REQUEST,
sizeof (TB640 MSG LINE SERVICE RES FREE)
in hAdapter,
0,
0)s

/* Set the message payload */

pRequestFree = (PTB640 REQ LINE SERVICE RES FREE)
TBX MSG PAYLOAD POINTER(hMsg);

pRequestFree->un32MsgVersion = 1;

PRequestFree-> hLineServiceRes= in hlLineServiceRes;

/* Send the allocation message to single adapter. Note that the last
argument is non NULL. This call will return a handle on an implicit

Page 60 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL

TB640 User's guide

filter. This filter can be used to retrieve the response to this request.

*/
APIResult = TBXSendMsg (
in hLib,
in_ hAdapter,
&hMsg,
&hFilter);

}

/* Insert code here for the operations to be done in parallel */

/* Multi-threading is recommended to obtain best performance and take full

advantage of the asynchronous capabilities */

if (TBX RESULT SUCCESS(APIResult))
{

/* Use implicit filter returned by TBXSendMsg call to retrieve response

message. Call blocks for maximum 5 second. */
APIResult = TBXReceiveMsg (
in hLib,
hFilter,
5000,
&hMsg) ;
}

if (TBX RESULT SUCCESS(APIResult))
{

/* Retrieve the message payload */

pResponseFree = (PTB640 RSP LINE SERVICE RES FREE)
TBX MSG_PAYLOAD POINTER(hMsg);

FreeResult = pResponseFree->Result;

if (TBX RESULT SUCCESS(FreeResult))
{

printf (“SUCCESS: Deallocation of trunk channel resource\n”);

printf (“FAILURE: Deallocation of trunk channel resource\n”);

}

/* Release message buffer */
APIResult = TBXReleaseMsg (
in hLib,
hMsg) ;

if (hFilter != 0)
{

/* Destroy the implicit message filter */
TBXDestroyMsgFilter (in hLib, hFilter);

Copyright © 2002-2008 by TelcoBridges inc.

Page 61

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.1.2 CTBUS resources

The CTBUS channel resources are end points resources and therefore they are non flow through resources. It is
possible to allocate CTBUS resources in half or full duplex mode.

Half duplex resource <:| Half duplex resource
Non flow through Non flow through

Full duplex resource
Non flow through

gl

Figure 17: CTBus resource categories

The CTBUS is used to make connections from two different adapters in the system. The CTBUS is allocated in stream
and timeslots when using the TB640 API. There are 32 streams of 128 timeslots each to give 4096 unidirectional
timeslots (2048 conversations can take place simultaneously).

A bidirectional connection of one voice conversation between two adapters in a system requires 2 timeslots. For
example: Adapter A will drive stream 4, timeslot 34 and receive from stream 20, timeslot 36, while Adapter B must
drive stream 20, timeslot 36 and receive from stream 4, timeslot 34. Remember that these resources must be allocated
on each of the adapters in a system (each adapter being independent) and the resource handles might be different
values.

Timeslot
0 1 2 3 127

N = O

Stream

31

Figure 18: TB640 CTBUS timeslot allocation

Allocation and freeing of CTBUS resources can be made real-time without restrictions.
To speed up real-time processing, the CTBUS resources can be pre-allocated. When a connection is required to go
through the CTBUS, one of the previously allocated timeslot pair (one receive, one transmit) can be chosen. Some
premises must be validated before this can be implemented. Here is the list
e CTBUS limitation: Total number of non-blocking conversations must not exceed 2048 for one cPCI
chassis. This means you can have up to 132 E1 trunks in one cPCI chassis when no ISDN or SS7 is used
(4092 channels, 2046 conversations)
e Adapters in a system must always transmit to the same CTBUS timeslots. Only the receive timeslot from
CTBUS will be selected.
e The application must have control over the CTBUS timeslot allocation at runtime
Each adapter will have a set of transmit to CTBUS timeslots assigned to it and the receive timeslot from CTBUS will
be matched to the transmit timeslot of the other adapter.

Page 62 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

For example, you plan having 4 adapters of 32 trunks each in a system, for a total of 128 trunks. Supposing all trunks
are configured as E1 with ISDN stack at runtime, this gives 30 channels per trunk or 960 channels per adapter. You can
allocate all CTBUS transmit timeslots for every adapter at startup. Adapter#1 will transmit starting at stream0:timeslot0
[0:0], up to stream7:timeslot63 [7:63], Adapter#2 will go from [7:64] to [14:127], Adapter#3 will go from [15:0] to
[22:63], Adapter#4 will go from [22:64] to [29:127]. This leaves 2 streams free, [30:0-127] and [31:0-127], or 256
timeslots (8 more trunks could be added in the cPCI chassis). When a connection is made from Adapter#2 to
Adapter#4, you can, for example, choose [7:64] as the transmit timeslot of Adapter#2 and [22:64] as the transmit
timeslot of Adapter#4. This means the receive timeslot for Adapter#2 must be [22:64] and the receive timeslot for
Adapter#4 must be [7:64].

[0:0] [7:63] [7:64] [14:127] [15:0] [22:63] [22:64] [29:127] [31:127]
— — - N o CTBUS
0| 1 959 0] 1 959 0] 1 959 0| 1 959 [X
TB640#1 TB640#2 TB640#3 TB640#4
CTBUS
[0:0] to [14:127] and
[7:64] to [31:127] [22:64] to [31:127] RX
[0:0] to [7:63] and [0:0] to [22:63] and
_ [15:0] to [31:127] [30:0] to [31:127]
cPCI chassis

Figure 19: TB640 CTBUS allocation example

6.1.3 Stream resources

Stream resources are used to carry voice, music or other data to a specific destination on an IP network (e.g. stream
server, another TB640 or an IP equipment). The stream resource actually represents the IP side (address and port) of a
voice/data path. Stream resources can only be connected to Stream Voice Processing resources (any Voice Processing
group which includes a stream Voice Processing resource). Output of the Stream resource can be sent to the stream
server to be recorded or any other IP equipment supporting the RTP protocol. Input from a stream server or from
another IP equipment using RTP can be played out onto a stream resource which can then, in turn, play it onto a stream
voice processing resource.

Copyright © 2002-2008 by TelcoBridges inc. Page 63

TB640 User's guide CONFIDENTIAL 9000-00002-2H

18640 Play VP Group

Trunk TDM | Stream Stream
Res VP Res | VP Res ks Res

- ¢—— Stream Server

Figure 20: Stream resource high-level view

The stream resources are end points resources and therefore they are non flow through resources (the other side of the
resource being the physical connection to the network equipment). Usually, it is possible to allocate stream resources
in full duplex or half-duplex mode but some usage may restrict the allocation stream resource to specific configuration
parameters. For example, stream resources that are to be used with Volp voice processing group need to be full-
duplex. Refer to section 6.2 for more information about voice processing groups. In case of allocation error, the
TB640 will output diagnostic traces through its debugging port allowing a developer to get more information about the
problem and fix it quickly.

% Do not confuse ‘stream resource’ with ‘voice processing stream resource’ (refer to section 6.2). The
stream resource represents an endpoint onto the network (with an IP address and port) while the
voice processing resource represents an endpoint onto a physical device that provides voice
functionalities (i.e. DSPs or Volp devices). You actually connect those two types of resource
together to link the voice processing device to the IP network.

In addition, a few more parameters must be included. Being an IP network endpoint, a stream resource needs to be
configured with destination IP addresses, source UDP port and destination UDP ports. Up to two destination IP
addresses are available for configuration. Each IP address is associated with a physical Ethernet interface of the
TB640. For example, ‘szIPAddr0’ is always associated with Ethernet interface ‘eth0’ while ‘szIPAddr’ is always
associated with ‘eth1’ Ethernet interface when the stream resource is connected to a voice processing resource Group0
(IVR - Interactive Voice Response). Refer to section 6.2 for more information about voice processing groups.
Having the ‘szIpAddrx’ parameters attached to a physical interface (rather than to an IP network through a netmask) is
necessary for redundancy purposes.

In reference to RFC791 (IP) and RFC768 (UDP), we can associate these addresses and ports with values that will be
used during the UDP or RTP communication with the remote end. During this communication, UDP packets will be
sent from the TB640 (i.e. Egress path) and packets will be received by the TB640 (i.e. Ingress path) with a standard
packet header format (see Figure 21). Parameters ‘szIPAddr0’ and ‘szIPAddr1’ of the stream resource will correspond
to the field ‘Destination Address’ of the IP/UDP packet in the Egress direction. On the other hand, it is not mandatory
to have the ‘Source Address’ from the Ingress direction to have these values. The TB640 only uses the ‘Destination
UDP port’ and ‘Source Address’ in the Ingress direction to validate the received packets final destination. The
parameter ‘unl6ToNetworkIPPort’ from the stream resource corresponds to the ‘Destination UDP port’ of packets in
the Egress direction. The parameter ‘unl6FromNetworkIPPort’ from the stream resource corresponds to the
‘Destination UDP port’ of packets in the Ingress direction (i.e. the TB640 local port to which the remote end needs to
send packet to). There is no way for the user to specify the ‘source UDP port’ for packets in the Egress direction but

the TB640 will always use the same port as the ‘Destination UDP port’ from the Ingress direction.
1 2 3
01234567890123456789012345678901
T T i I S T i i S i 3

| Version| [IHL | Type of Service| Total Length |
B R L R e E e e i s o o S T i TR R S e B e e e 2
| I dentification | Fl ags| Fragment O f set

B e s T S S e N el s S S S S S S S S S S
| Tine to Live | Protocol (UDP) | Header Checksum [
B S T a T T o S o o I e S s s s T e s i S S
| Sour ce Address |
R R R R e R e e s s e o S e e e
| Desti nati on Address |
B e T T S S T T s S S S S S S S S S i
I

Opti ons Paddi ng |

Page 64 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

T I S s i S T o T S S S A S S S S

| Source UDP port | Desti nati on UDP port |
B o s s o st S e R e e R al ol st ST R S S I S S S S
[Length | Checksum |

T i T S S e i T i S S S S S
Figure 21 - IP/UDP packet header description

% For IP/UDP Egress packets
Source Address = TB640 ethernet interface IP address
Destination addess = ‘szIPAddr0’ or ‘szIPAddr1’ parameter from the stream resource
Source UDP port = ‘unl6FromNetworkIPPort’ parameter from the stream resource
Destination UDP port = ‘un16ToNetworkIPPort’ parameter from the stream resource
& For IP/UDP Ingress packets
Source Address = Any
Destination addess = TB640 ethernet interface IP address
Source UDP port = Any
Destination UDP port = ‘unl6FromNetworkIPPort” parameter from the stream resource
Multiple redundancy modes are supported by a stream resources (i.e. switched, redundant and none) but not all of them
are relevant depending on the application or the network in which the application is deployed. = Therefore, the
developer must refer to the Voice processing APl document to get the limitation/usage of every redundancy mode
(refer to section 6.1.3.1).

Half duplex resource <:| Half duplex resource
Non flow through Non flow through

Full duplex resource
Non flow through

gl

Figure 22: Stream resource categories

As another configuration parameter, different packet types are supported depending on the voice processing group to
which the stream resource will be connected to. For example, IVR services are usually done using G.711 Alaw or
uLaw encoding (PCM, 8 bits, 64kbps). On the other hand, Volp services support much more compression codecs and
speed rates in order to interoperate with other Volp equipment on the network. Along with the codec type, the
application needs to specify the packet rate (or duration) to be used for the desired codec. These durations vary
according to the codec and the type of voice processing group that will be used in the connection. They range from
Smsec duration (Volp) up to 160msec duration (IVR). Lower packet duration values will lower latency of the stream
but will increase the bandwidth usage due to the IP/UDP/RTP protocol overhead. It will also increase the processing
power required to use the stream resource (i.e. more packets per seconds to process). On the other hand, greater values
of packet duration will lower bandwidth usage but increase the latency of the voice conversation. Similarly, the
processing power required to use such stream will decrease as well. The use of one packet duration versus the other
depends on the type of application. As an example, voice mail or ring-back tone systems don’t suffer from greater
latency from the recorded data. In these cases, the stream resource will be configured with the longest packet duration
and connected to a voice processing resources for IVR (Group0). Refer to section 6.2.2.2 for more information about
voice processing groups. Having long packet duration will also allows a stream server (located on a host machine) to
process more streams in parallel, thus getting a higher density of streams per host machine. In situations where bi-
directional voice or data conversations are taking place, latency will affect the conversation’s overall quality (and
possibly create echo). To avoid this, the use of much lower packet durations (i.e. 5-20 msec) is desirable as in typical
Volp applications (using voice processing resources from Groupl).

To get a complete description of configuration parameters for stream resource, the developer should refer to the Stream
API document included in an official software release package.

Copyright © 2002-2008 by TelcoBridges inc. Page 65

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.1.3.1 Stream redundancy

The stream resource has the capability to support network redundancy for voice RTP stream when communicating with
the stream server. Different types of redundancy are available but not all of them are supported by every voice
processing groups. The stream resource redundancy allows an RTP stream to be protected against a network failure
(i.e. an Ethernet switch failure) or a stream server application failure by monitoring the path between the blade and the
remote entity. If the blade detects that the remote peer cannot be reached anymore, it applies the redundancy procedure
described below:

6.1.3.1.1 Redundancy mode "none”

This mode actually tells the blade to turn off any redundancy scheme. Therefore, it the host application has configured
‘szIPAddr0’, the RTP traffic will be sent out through the first physical interface to the specified address. On the other
hand, configuring an IP address in ‘szZIPAddrl’ will force the traffic out from the second Ethernet interface. If both
addresses are configured, ‘szZIPAddr0’ only will be used.

& The RTP traffic is sent out through the first or second physical Ethernet interface (depending on the
configurations of szZIPAddr0 and szIPAddrl) regardless of the destination IP address. No routing is
applied to the packets.

& This redundancy mode is NOT supported by VP group type 0 (IVR).

6.1.3.1.2 Redundancy duplicate mode

The redundancy duplicate mode is actually the simplest mode to implement. The RTP traffic is sent to the two
configured IP addresses (i.e. szZIPAddr0 and szIPAddrl). Since each IP address is assigned to a different physical
Ethernet ports (see section 6.1.3), it is easy to build a system with different subnet going to different Ethernet switches.
This method consumes twice the normal required network bandwidth (since the traffic is sent twice) but has the
advantage that there will be no packet loss at the receiving end. Indeed, the receiving end will take RTP packets from
one or the other RTP stream by respecting the sequence number (and obviously drop the duplicate packet). In case one
of the streams fails, the other RTP stream will continue feeding the receiving end. To benefit from this redundancy
method, the system needs to be protected with multiple Ethernet switch as shown in Figure 23.

& This redundancy mode is NOT supported by VP group type 1 (VoIP).

Page 66 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

M
¥ TB640-64

1, T
L]
==

1 Y11= TB64064

- er e e e e e e o e o

Ethernet switch S2
SubnetY

Ethernet switch S1
Subnet X

E

—1
== ===
I I I [
Host server A Host server B

Figure 23: Redundancy network configuration

6.1.3.1.3 Redundancy switched mode

This redundancy mode uses a TelcoBridge’s proprietary protocol to monitor the RTP stream to make sure that both
ends can still reach each other. When the protocol detects that the remote end is no longer reachable, it switches the
RTP traffic to the redundant stream. Again, this redundancy mode is useful only if the system is designed with
different subnets and physical Ethernet switches connected to the physical Ethernet interfaces of the blade as shown in
Figure 23 (otherwise, there will still be single point of failures in the data path). This redundancy mode has the
advantage of consuming only relevant network bandwidth but has a longer turnaround time when detecting a failure.
In the worst condition, the receiving end will hear a gap of up to 300msec in the voice while the failure is detected and
worked-around through the redundant stream.

& This redundancy mode is NOT supported by VP group type 1 (VoIP).

6.1.4 Transcoding resources

The transcoding resources are processing resources that allow translation of the G.711 encoding from plaw to ALaw
and ALaw to pLaw. A transcoding resource is defined by the application and can be used by multiple connections
without freeing it. When a connection is made with a transcoding resource definition handle, the physical resources are
allocated automatically.

They are flow through type of resource. It is possible to define transcoding resource in half or full duplex mode.

Copyright © 2002-2008 by TelcoBridges inc. Page 67

TB640 User's guide CONFIDENTIAL 9000-00002-2H

|:> Half duplex resource
Flow through

Half duplex resource
<:| Flow through <:|

|:> Full duplex resource

<:| Flow through

Figure 24: Transcoding resource categories

(U

6.1.5 Multi-Blade Link resources

The Multi-Blade Link (MBL) channel resources are end points resources and therefore they are non flow through
resources. It is possible to allocate Multi-Blade Link resources in half or full duplex mode.

Half duplex resource <:| Half duplex resource
Non flow through Non flow through

Full duplex resource
Non flow through

IRl

Figure 25: Multi-Blade Link resource categories

The Multi-Blade Link resources are used to interconnect channels from different TB640 adapters via a TB-MB adapter.

TB-MB

TB640 | | TB640 | | TB640 | | TB640
A B C D

Figure 26: Multi-Blade system

The TB-MB is able to interconnect channels from up to sixteen TB640 adapters via its 16 MBL ports. Each MBL port
consist of 16 input streams of 128 timeslots and 16 output streams of 128 timeslots (total of 2048 full-duplex channels).
The TB640 is able to interconnect channels on redundant TB-MB adapters (an active and a standby TB-MB adapters)
via its single MBL port with dual link capability (Link A and Link B).

In a Multi-Blade system like in Figure 26 to interconnect channels from adapter A to C, the following operations have
to be done:

- Allocate MBL port on A (port 0);

- Allocate MBL port on C (port 0);

- Allocate MBL resource on A (port 0, stream x0, timeslot y0);

- Allocate MBL resource on C (port 0, stream x1, timeslot y1);

- Allocate MBL port on TB-MB (port where A is physically connected);

Page 68 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

- Allocate MBL port on TB-MB (port where C is physically connected);

- Allocate MBL resource on TB-MB (port where A is physically connected, stream x0, timeslot y0);

- Allocate MBL resource on TB-MB (port where C is physically connected, stream x1, timeslot y1);

- Connect the MBL resources allocated on TB-MB;

- Connect the MBL resource on A (port 0, stream x0, timeslot y0) to another available resource on A (i.e. trunk
resource, CT Bus resource, VP resource...);

- Connect the MBL resource on C (port0, stream x1, timeslot y1) to another available resource on C (i.e. trunk
resource, CT Bus resource, VP resource...).

Allocation and freeing of Multi-Blade Link resources can be made real-time without restrictions.

To speed up real-time processing, the Multi-Blade Link resources can be pre-allocated. When a connection is required
to go through the Multi-Blade Link, one of the previously allocated timeslot pair (one receive, one transmit) can be
chosen.

It is possible to allocate MBL resource in half-duplex mode if required.

Copyright © 2002-2008 by TelcoBridges inc. Page 69

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.2 Voice processing

The Voice Processing unit is used to activate functions on streams to create applications. For example, IVR (Interactive
Voice Response) for calling card application requires DTMF detection and prompt playing. By allocating Voice
Processing (VP) resources in Voice Processing (VP) groups and connecting them to channel resources, specific
functions can be created. These functions can run on DSPs or other devices on the TB640 such as Volp specialized
devices.

To obtain a specific voice processing function, the application needs to allocate a voice processing group which will
contain one or more voice processing resources. Each resource within a same group can have different configuration
parameters. Within a group, a resource represents an endpoint that can be used during a connection.

& It is NOT possible to create connections to a voice processing group. It is possible to create
connections to the different resources within a voice processing group.

Regrouping different voice processing resources together within a group activates an interaction between the different
resources. For example, having a voice processing TDM resource and a voice processing STREAM resource allocated
together within a group creates a “TDM to packet’ converter with specific parameters (i.e. codecs, jitter buffers, VAD,
etc). Having many voice processing TDM resources within the same group creates a conferencing function with
specific parameters (i.e. AGC, volume control, number of dominant talker, etc).

& Do not confuse ‘stream resource’ (refer to section 6.1.3) with ‘voice processing stream resource’.
The stream resource represents an endpoint onto the network (with an IP address and port) while the
voice processing resource represents an endpoint onto a physical device that provides voice
functionalities (i.e. DSPs or Volp devices). You actually connect those two types of resource
together to link the voice processing device to the IP network.

6.2.1 Voice processing resources

The Voice Processing unit includes many types of Voice Processing (VP) resources that falls into two different
categories: resources than can are TDM-based and resources that are stream-based (packet). Regardless of the
category, each voice processing resource has specific function and configuration parameters. Some resource types (e.g.
pure TDM, TDM-FSK, TDM-T.38) are designed to be used in conjunction with other resource types (e.g. pure stream,
stream-SFK, stream-T.38), while some resource types (e.g. TDM-flowthru, TDM-non-flowthru) can be used alone
within a voice processing group. The use of all different types of resource is explained in the sections below.

Each of the VP resource can have an input and an output available for a connection. Voice Processing can be
performed on input or on output. Voice processing TDM encoding is a global configuration and is done on G.711 Alaw
input by default (this can be changed to plaw upon next reboot using TB640 MSG_VP_GROUP_SET NVPARAMS).
Any resource connected to a Voice Processing resource must have the same encoding type otherwise the voice quality
will be degraded. In case where the encoding would be different (e.g. connecting to a voice channel on a trunk with
different encoding law), a transcoding resource must be used to ensure proper voice quality (refer to section 6.1.4).

& The voice processing unit global encoding affects the TDM side of a group, NOT the packet side.

6.2.1.1 TDM VP resource

Voice processing TDM resources (also referred as ‘pure-TDM resources’) represent a TDM connection endpoint on the
internal TDM bus. Such resource can be connected in a half-duplex or full-duplex fashion to any other TDM endpoint
of the blade (i.e. trunk resource, Ct-bus resource, Multi-blade resource or another voice processing TDM resource). If
the Voice Processing unit is configured as Alaw (by default), TDM G.711 plaw input can be converted to Alaw by
using a transcoding TDM resource (see section 6.1.4). Usually, a voice processing TDM resource is either used in
conjunction with a voice processing stream resource to create a ‘TDM to packet’ converter or is used as a TDM
member part of a conference. Depending on its usage within a group, some configuration parameters may or may not
be used. Refer to Voice processing API documentation for further details.

Page 70 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

6.2.1.2 TDM Flowthru VP resource

Voice processing TDM flowthru resources are almost identical to ‘pure-TDM’ resources (refer to section 6.2.1.1) with
the exception that they are designed to be used alone within a group. Such resource actually represents a TDM
loopback endpoint that can provide voice functionalities (i.e. tone detection/generation, volume control, etc). It can be
connected in a half-duplex or full-duplex fashion to any other TDM endpoint of the blade (i.e. trunk resource, Ct-bus
resource, Multi-blade resource or another voice processing TDM resource). If the Voice Processing unit is configured
as Alaw (by default), TDM G.711 plaw input can be converted to Alaw by using a transcoding TDM resource (see
section 6.1.4). This resource type is not available for all voice processing group types (refer to section 6.2.2).

6.2.1.3 TDM FSK VP resource

Voice processing TDM FSK resources represent the TDM connection endpoint of an FSK (Frequency shift keying)
modulator/demodulator. Using a specialized voice processing API, an application can send/receive data that is
modulated/demodulated to/from a 64kbps timeslot. Such resource can be connected in a half-duplex or full-duplex
fashion to any other TDM endpoint of the blade (i.e. trunk resource, Ct-bus resource, Multi-blade resource or another
voice processing TDM resource). If the Voice Processing unit is configured as Alaw (by default), TDM G.711 plaw
input can be converted to Alaw by using a transcoding TDM resource (see section 6.1.4). This type of resource can be
used to establish a data path onto the TDM network with a remote equipment supporting the same FSK protocol. This
resource type is not available for all voice processing group types (refer to section 6.2.2).

6.2.1.4 TDM Echo Near/Far VP resource

Voice processing TDM Echo near/far resources represent the TDM connection endpoint of a full-duplex TDM-only
echo canceller. It is designed to be used always in pair within a group (i.e. one TDM echo near resource and one TDM
echo far resource). Such resource can be connected in a half-duplex or full-duplex fashion to any other TDM endpoint
of the blade (i.e. trunk resource, Ct-bus resource, Multi-blade resource or another voice processing TDM resource). If
the Voice Processing unit is configured as Alaw (by default), TDM G.711 plaw input can be converted to Alaw by
using a transcoding TDM resource (see section 6.1.4). Note that such resources are not always required since other
‘TDM to packet’ resource combination have inline echo cancellation functions as well. These resources should be
used in case where echo cancellation is required and that no in-line echo function is available. This resource type is not
available for all voice processing group types (refer to section 6.2.2).

6.2.1.5 TDM T.38 VP resource

Voice processing TDM T.38 resources represent the TDM connection endpoint of a “TDM to packet’ converter
specialized in Fax relay (RFC2833). Such resource can be connected in a half-duplex or full-duplex fashion to any
other TDM endpoint of the blade (i.e. trunk resource, Ct-bus resource, Multi-blade resource or another voice
processing TDM resource). If the Voice Processing unit is configured as Alaw (by default), TDM G.711 plaw input
can be converted to Alaw by using a transcoding TDM resource (see section 6.1.4). This resource MUST be used in
conjunction with a voice processing stream T.38 resource to create a ‘TDM to packet fax relay’. This resource type is
not available for all voice processing group types (refer to section 6.2.2).

& A TB640 VpGrpl Fax resource can only be used to process one fax transmission. Once the
transmission is done, the resource needs to be de-allocated. This is due to the Fax state machine
handling in the physical voip devices. Thus, an application cannot pre-allocate T.38 VpGrpl
resource as it does for voice-related resources.

6.2.1.6 Stream VP resource

Voice processing stream resources (also referred as ‘pure-stream resources’) represent a packet connection endpoint
internal to the blade. Such resource can be connected in a half-duplex or full-duplex fashion to any other stream
endpoint of the blade (i.e. stream resource). Usually, a voice processing stream resource is either used in conjunction
with a voice processing TDM resource to create a “TDM to packet’ converter or is used as a stream member part of a
conference.

Copyright © 2002-2008 by TelcoBridges inc. Page 71

TB640 User's guide CONFIDENTIAL 9000-00002-2H

& Even if it would seem logical to do so, connecting two voice processing stream resources together is
not allowed. The main reason is that networking information (IP address, ports, etc.) is located into a
stream resource (not a voice processing stream resource). This information is required to establish a
complete connection. Thus, loopbacks on stream-side of a blade is achieved by using the IP address
127.0.0.1.

For validation purposes, there are some redundant parameters within a voice processing stream resource and a stream
resource (e.g. codec type, packet duration, etc). These parameters need to be identical for a connection between the
two resources to be accepted by the blade.

6.2.1.7 Stream T.38 VP resource

Voice processing stream T.38 resources represent a packet connection endpoint of a ‘TDM to packet’ converter
specialized in Fax relay (RFC2833). Such resource can be connected in a half-duplex or full-duplex fashion to any
other stream endpoint of the blade (i.e. stream resource). This resource MUST be used in conjunction with a voice
processing TDM T.38 resource to create a ‘TDM to packet fax relay’. This resource type is not available for all voice
processing group types (refer to section 6.2.2).

& A TB640 VpGrpl Fax resource can only be used to process one fax transmission. Once the
transmission is done, the resource needs to be de-allocated. This is due to the Fax state machine
handling in the physical voip devices. Thus, an application cannot pre-allocate T.38 VpGrpl
resource as it does for voice-related resources.

6.2.2 Voice processing groups

As mentioned before, voice processing resources can be combined within a single entity called ‘group’. This group
represents the voice functionalities resulting of the resources combination (i.e. conference, ‘TDM-to-packet’ converter,
etc.). To offer the best level of flexibility and performance, a voice processing group capacity is intimately related to
the hardware capabilities of the TB640 voice processing unit. Such unit has multiple formats and implementations
resulting in different sets of voice capabilities. For example, a DSP mezzanine is the most appropriate platform to
achieve IVR and conferencing services but is not powerful enough to do complex codec transcoding. Thus, another
mezzanine using dedicated Volp devices is available for this type of application. The voice processing API reflects
these physical characteristics by having two different groups of functions: group0 (IVR) and group! (Volp). In the
future, the APIs will also adapt to any other new voice processing devices and capabilities. The same base principles
will still apply: one voice processing group can contain one or multiple voice processing resources.

When more than two VP resources are specified in a VP group, a conferencing function will be used on the inputs and
the conference output will be sent to each VP resource output. This conference group can be managed using the VP
group handle rather than affecting each individual resource handle. The VP group handle must be used when using
messages associated with the group (for example: TB640 MSG _ID VP _GROUP_RES GET PARAMS). When
creating a group, you will also get a handle for each VP resources within the group allowing the application to connect
them to other resource in the system (such as trunk or CTBUS resources).

Since specialized hardware have different configuration options from one group type to the other, different
configuration structure are used. Some resource types are only allowed for certain group types, again, because of
hardware capabilities. To ease the configuration, the voice processing API has been separated in different sets of
structures regrouping the different functionalities together for every group type. Although the actual functionalities
and capabilities of each group are described in details within the voice processing API guide, a brief description is
given in the following sections.

& If proper hardware support is present on the blade, the application can make use of any voice

processing group capabilities (from any groups) and combine them to build extremely flexible, non-
blocking overall product.

Page 72 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

6.2.2.1 Voice processing group0 (IVR) capabilities

Voice processing group type 0 is implemented using a DSP mezzanine and is used when the application requires one or
more voice services listed below:

. Tone detection and generation (DTMF, MFR1, MFR2 Fwd/Bckwd) [inline or not]

. TDM to packet conversion (G.711 20, 80, 160 msec) and associated functions (VAD, jitter buffers, etc.)

. Interaction with TelcoBridges’ Stream server (with or without RTP redundancy)

. Conferencing and associated functions (AGC, dominant talker algorithms, etc.) up to 12 members per group
. FSK/ADSI/Callerld reception and transmission capabilities

Since each voice processing function may have an influence on the voice according to its location within the processing
block, overview diagrams are provided below of all supported types of voice processing resources for group type 0
(IVR). More details about their configuration parameters are provided within the voice processing API document.

Tone detection
AGC Tone suppression VAD
Toward conferencing group

hTdmResource or

ﬁ ’7 stream resource
Tone generation

Figure 27: VP group0 TDM resource schematic

Tone detection
AGC Tone suppression

Tone generation

Figure 28: VP group0 TDM flowthru resource schematic

hTdmResource

G.711 decode » AGC > Tone detectio_n » CNG
F’ alaw/uLaw Tone suppression
Toward conferencing group
hStreamResource or
ﬁ TDM resource
G711encode | Tone generation 4—’7
alawiuLaw |

Figure 29: VP group0 stream resource schematic

Copyright © 2002-2008 by TelcoBridges inc. Page 73

TB640 User's guide CONFIDENTIAL

| TASIDTMF tone | | FSK

detection receiver
Toward voice

_ M

hTdmResource

1

Tone generation

processing API

Pu—

Figure 30: VP group0 TDM FSK (Rx) resource schematic

_ I

DTMF tone
detection

hTdmResource

P Toward voice

1

Tone generation ~—

FSK

transmitter

processing API

Figure 31: VP group0 TDM FSK (Tx) resource schematic

. Inp1
B VAD su N?éz(;ion I
Toward TDM r PP
or
stream resource 47 N loudest
speakers
AGC
Inpx + ... + Inpy
EEm Mixer
: Inp12
. VAD) Ni)lse.]
Toward TDM r suppressio
or
stream resource N loudest
speakers
AGC
Inpx + ... + Inpy

Figure 32: VP group0 conferencing schematic

6.2.2.1.1 VP group0 resource usage examples

6.2.2.1.1.1 One TDM VP resource in a VP group

9000-00002-2H

A TDM stream comes-in, is processed, then comes out on the same VP resource. This is usually a
simplex connection that needs to have the DTMF tones monitored or to be able to generate a tone

at any time.

The difference between a TDM and a TDM flowthru resource resides in the loopback

capability. The pure-TDM resource will not loop the voice traffic back onto the TDM bus while

the TDM flowthru will.

Page 74

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide
In-band TDM
TDM Tone TDM Tone Tone detection
detection Generation & Generation
VP VP VP VP VIP VP
I*I OlIJT I".‘N D‘JT Itl O::lT
TOM TSM TDM TOM TOM TOM
| ouT IN owT | owT

Y

\J

Figure 33: TDM VP resource

6.2.2.1.1.2 One Stream VP resource in a VP group

A Stream comes-in, is processed, then comes out on the same VP resource. This is usually a
simplex connection that needs to have the DTMF tones monitored or to be able to generate a tone
at any time. Stream tone detection and generation can be either in-band or out-of-band packets.

Stream Tone

S_It_r::em S-:-r;: ;n Detection &
Detection Generation Generation
VP VP VP VP VIP
I*l OiJT I%N OlIJT Ill olT
Strgam | Stream || Stream | Strgam || Strgam | Strgam
| OuT | IN | OUT IN | oUT

| Y !

Figure 34: Stream VP resource

6.2.2.1.1.3 Two TDM VP resources in a VP group

This mode is not recommended. The system will create a conference of two members and will
reach the limit of conferences available. Other ways of doing this are available.

6.2.2.1.1.4 Two Stream VP resources in a VP group

Similar to two TDM resources except that the inputs are from Stream resources instead of TDM
resources. A Stream enters first VP resource, is processed, and then comes out on second VP
resource, while the Stream that enters the second VP resource is processed and then comes out on
the first resource. This is to monitor and generate tones both ways in a two-party conversation.

6.2.2.1.1.5 One TDM and one Stream VP resource in a VP group

Copyright © 2002-2008 by TelcoBridges inc. Page 75

TB640 User's guide CONFIDENTIAL 9000-00002-2H

A Stream input comes out as a TDM stream while the TDM stream input comes out as a Stream.
This is to create a TDM to Stream transfer for recording or playing streams, and other applications.
This group exceptionally requires only one VP resource.

VP Group Play and Record

VP VP VP
III ouT |IN owT

oM | TOM || Strdam Striam
W | obr || k| obT

\J \

From To From To
Caller Caller Playback Record

System System
Figure 35: Play and Record

6.2.2.1.1.6 More than two TDM and/or Stream VP resources in a VP group

This is a conference between multiple TDM and/or Streams. Each incoming party will be included
in the conference and the output will be sent to each of the parties. A VP group formed of 5 TDM
VP resources will generate a 5 party conference. For example, Figure 36 shows one VP group
composed of four VP resources. Two VP resources are configured with TDM and two others are
configured as Streams. All of them are configured with tone detection and suppression.

VP Group Mix Conferencing

Conference
Party#1 Party#2 Party#3 Party#4

‘ | I |
Jp Vv vP
IIFI ouT | ouT | olT | olT
™M | TOM || Strdam Striam oM | TdM || Strdam | Strdam
N | obT | ouT N | obT | obT

Y Y v Y

Figure 36: Four party conference with TDM and Stream inputs and tone detection and suppression

Page 76 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

6.2.2.2 VP group0 functions

6.2.2.2.1 Tone Detection, Suppression and Generation
Tones work on both the TDM and the Stream VP resources.

6.2.2.2.1.1 Tone detection and suppression

Each tone detector must be configured to detect either DTMF, MFR1, MFR2 Forward or MFR2 backward tones. When
a tone is detected, the TB640 MSG _ID VP TONE NOTIF DETECTION event will be generated to the host
application. When the tone stops, the TB640 MSG _ID VP_TONE_NOTIF_STOP event will be generated. If
suppression is enabled, the tone will be removed from the voice path and silence will be inserted. You also get a
timestamp in millisecond for each of those events. This can be compared to any previous event received with this
timestamp.

6.2.2.2.1.2 CAS tone detection

If a CAS stack is allocated on a trunk, the CAS stack will free Voice Processing resources after the connection is made.
Application must free the Voice Processing resource once the call is complete. You must not pre-allocate the resources
or the CAS stack will not be able to use the resources.

When a CAS stack is allocated and a call is in progress, the tone detected will be trapped by the CAS stack and will not
be sent to the host application.

6.2.2.2.1.3 Tone generation

To generate a continuous tone, the frequencies (in hertz), amplitude (in dbm) and duration of the tone must be
specified. If the duration is infinite (value of -1), the TB640_ MSG _ID VP _TONE_STOP must be used. To generate a
cadenced tone (busy, ringback, reorder, etc.), in addition to the frequency and amplitude, the on and off time must be
specified and the TB640 MSG _ID_VP_TONE_STOP message must be used to stop the tone.

6.2.2.2.2 Automatic Gain Control (AGC)

This function is available on both TDM and Stream channels. If enabled, input amplitude will be adjusted. This is
useful for recording and conferencing functions.

6.2.2.2.3 Voice Activity Detection (VAD)

This function is useful when recording (TDM to Stream transfers). When voice stops being detected, less bandwidth
will be used on the network and the recording system can detect the start and end of the voice. When connecting to
ASR (Automatic Speech Recognition) servers using RTP transfers, this function must be disabled.

VAD can also be used on a TDM VP resource to detect when a user starts or stops speaking. It will generate an event
to a host application (if this event is registered). You will get the TB640 EVT VP_VAD NOTIF ACTIVITY every time
silence has stopped and 7B640 EVT VP _VAD NOTIF SILENCE when nothing is being heard. You also get a
timestamp in millisecond for each of those events. Be careful as this might generate many events to the host
application.

Three parameters are used in VAD: The noise floor, the Speech Hangover time and the Analysis Window size.

The noise floor is the threshold that defines the maximum signal level (in dBm) that is considered noise. The default
value is TB640 VP VAD NOISE FLOOR LEVEL CHAN DEFAULT.

The hang time is the amount of time in milliseconds that a silence decision is held before sending the event. The default
value is TB640 VP _GROUPO CONF VAD HANG TIME DEFAULT VALUE.

The window is the time to detect activity/silence (must be lower than the hang time).

The default value is 7B640 _VP_GROUPO_CONF VAD WINDOW SIZE DEFAULT VALUE.

6.2.2.2.4 TDM to Stream switching (Record)

When recording or processing is required on a TDM stream, it can be transferred to a Stream on a given IP address and
port. This Stream can then be recorded or processed by a Stream server (see the Stream Server user’s guide). The
Stream Server can be any system (a 1U chassis, an industrial computer or the same system running the application).

Copyright © 2002-2008 by TelcoBridges inc. Page 77

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Because the interface used for this recording is RTP, it can be coupled directly with multiple ASR (Automatic Speech
Recognition) or TTS (Text To Speech) servers supporting RTP.

6.2.2.2.5 Stream to TDM switching (Play)

When required to play voice, music or tone files to a TDM stream, the most efficient way is to have a Stream Server
store the files and stream them out to the TB640 adapter, which then converts it to TDM. This gives full flexibility on
the number of files stored and their size. Moreover, multiple Stream servers can be used to drive multiple TB640
adapters. Again, it can be coupled with available ASR or TTS engines using the RTP interface.

6.2.2.2.6 Conferencing (12 channels or less)

The conferencing function is used to mix inputs together. It can be used for phone conference, music while talking,
voice recording with music, etc. The input ports can be TDM or Stream. Each connection to a conference takes one VP
resource.

There is no special configuration for a conference: If more than two VP resources are specified in a VP group this
means a conferencing function will be used on the inputs. A VP group has to be allocated with a specific number of VP
resources, so this means the maximum conference size has to be determined when allocating the group.

The maximum size of a VP group is 12 members.

It is suggested to enable AGC when adding members to a conference.

A TDM member of a conference can be used for broadcasting (sending to an unlimited number of listeners). A
connection can be put to this member and copied to any resource (Trunk, CTBUS, Multi-blade, VoIP, etc.).

A Stream member of a conference can be used for play and record in that conference. Total delay of a conference is
10ms.

VP Group TDM Conferencing

Conference
Party#1 Party#2 Party#12
| |
VP V
| olT | olT | olT
oM | TOM TELM oM | Tom | TOM
N | olT | olT m | olT

y v \

Figure 37: TDM conference

6.2.2.2.7 Bridged Conferencing (12 channels or more)

To create a conference of more than 12 channels, a conferencing tree must be created. A root conference must be
created to bridge all other conferences, each of which will allocate a TDM channel for bridging. The root can bridge 12
conferences, each of which can have 11 channels (one is reserved for bridging to the root), for a total of 132
participants. Total delay for the conference is 30ms.

Page 78 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

Full-Duplex

ConnectiorS\

CONFIDENTIAL

12 Members conference

(11 active, 1 for bridging)
TDM

Connections

Figure 38: Bridged Conference

Copyright © 2002-2008 by TelcoBridges inc.

TB640 User's guide

Trunkres | »
(Active) / ¥Bm
Trunk res $Bm 12 Members conference:
(Active) TDM Bridge for 12 other conferences
MBL res TDM (130 active total)
we /T o
Ctbus res : TDM : TDM
i ! TDM TDM
Act
(Actve) i TDM E TDM
! ! TDM
I
; i : TDM
Trunk res TIIl)M ! ¥Bm
(Active) TDM : TDM
|
e
Trunk res : |
(Active) i DM !
T ! TDM]
: | TDM
: : TDM
| | TDM
! : TDM
I : TDM
! : TDM
I
I
E ! TDM
: : ¥Bm 12 Members conference
: : TDM (9 active, 1 for bridging, 1 for
: : TDM streaming, 1 for broadcast)
: : TDM
[: TDM
Trunk res ! $Bm
(Active)
TDM Record
Stream - » Streamres
TDM (Listeners) Play A
Trgnk res In TB640
(Llstener) > TDM ———“——-6u—t—_|_—Bg4—0'
Trl_Jnk res || \J
(Listener) > TDM Stream
: ! Server
I I
: Half-Duplex :
|

Page 79

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.2.2.2.8 Fsk

Fsk is mainly used to transfer Callerld to Fsk compatible customer premise equipments. It is also used to exchange
date, time, notifications messages presence in a message box and others application specific information to the CPE.
Different protocols are built on top of Fsk. Among them are Callerld type I, Callerld type II, and ADSI.

6.2.2.2.8.1 TelcoBridges Fsk engine

TelcoBridges Fsk resources can be used to receive Fsk data from a server and to transmit Fsk data to a CPE device.
TelcoBridges API allows one to build an application that will support almost any protocol layer as long as the frame
format conforms to GR-30-CORE. The Fsk engine supports layer II Single Message Burst (SMB) framing format and
layer II Multiple Message Burst (MMB) framing format. The TB640 has no knowledge of the layer III message
formatting, thus all layer III processing must be handled by the host. For Example, GR-30-CORE SMF and MMF are
layer III protocol, and must be handled by the host. Two different sets of frequency modulation are supported, ITU
V.23 and Bell 202. The Fsk receiver requires a minimum of 40 mark bits, or 40 ms, and does not require any seizure
bytes. The minimum Fsk receive level is -36 dBm.

A single Fsk resource supports reception and transmission but not at the same time. It must be told to either receive or
transmit according to protocol in use. For example, if Callerld type I is used and the TB640 is acting as the Fsk CPE,
then the resource must be toggled into Fsk reception. For the same protocol, if it’s acting as the Server, then sending a
request to transmit an Fsk message will automatically toggle the Fsk resource into transmission. Of course a resource
can be initially opened in either reception or transmission mode.

Callerld type II and ADSI are off-hook enabled protocols and uses TAS detection and generation. For off-hook
protocols, mostly when acting as a CPE, there is no way to predict in advance when an Fsk will be transmitted. A "just
in time" TAS signal is used to inform the CPE that Fsk data is to be expected. Upon TAS detection, the CPE must, if it
supports type II or ADSI, acknowledge it has received the TAS within a short time period. TelcoBridges DSP
solutions provide a mean to detect an incoming TAS signal on almost any Voice Processing resources and to
automatically fallback into Fsk reception mode upon TAS detection. When the resource does fallback, it automatically
sends a pre-configured tone as acknowledge to the Fsk Server. This insures the timing requirement between the TAS
and the CPE acknowledge is respected.

6.2.2.2.8.2 Acting as FSK CPE device

To emulate a CPE devices that supports on-hook only Fsk reception, the VP resource must be initially configured in
Fsk reception mode. If an off-hook protocol is to be used, then the VP resource may be allocated as normal “voice
mode” IVR resource with Fsk auto-reception fallback. Upon TAS detection the resource falls back into Fsk reception
and can fallback again into “voice mode” after reception is completed. The TAS acknowledge signal is customizable
and therefore can be DTMF-A, DTMF-B or any other application specific tone. An Fsk reception VP resource allows
tone generation, DTMF and TAS tone detection.

TelcoBridges Fsk solution supports for reception of Callerld type I, Callerld type II and multi- messages burst required
by ADSI GR-1273-CORE.

6.2.2.2.8.3 Acting as FSK server

To act as an Fsk server, the VP resource must be opened as Fsk, and configure in transmit mode.

An Fsk transmission VP resource allows tone generation and DTMF tone detection.

TelcoBridges Fsk solution supports for transmission of Callerld type I, Callerld type II and multi- messages burst
required by ADSI GR-1273-CORE.

6.2.2.2.8.4 Supported Fsk Frame format
TelcoBridges Fsk solution fully supports GR-30-CORE and GR-1273-CORE Fsk framing formats.

FSK Frame Format:

Layer II Burst Frame format: (Handled by the TB640)
SMB: Single Message Burst. GR-30-CORE

Page 80 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL

TB640 User's guide

MMB: Multiple Messages Burst. Up to 5 according to GR-1273-CORE

<mmmmmmm Layer II SMB Burst Format -------------------- >
D Sttt One Message —————-———————————————————--—- >
<- SMF or MMF Payload ->
<- Variable -> <- 1 Octet -> <- 1 Octet -> <- Up to 255 Octets ->
o Fom Fom o +
SMB | Preamble | MsgType | MsgLen | Layer III Payload
F-m— Fom Fom - +
<—=—--—- Layer IT MMB Burst Format --------- >
<-- Up to Five Messages in a single burst -->
Fo———— F——— Fo——— F——— F-———— - +
MMB | Preamble | Msg # 1 | Msg #2 | Msg #3 | Msg #4 | Msg #5 |
tom tm——————— tm—————— tm—————— Fm—————— Fm—————— +
I I
/=7 N \
I \
[<==mmmmmmmmm e Msg #1 ———————---——— >

<-

MMB Fragment #1 | MsgType | MsgLen | MsgNum | L

Notes on layer II:

SMF/MMF Payload ->
Up to 254 Octets ->

1) The preamble is the addition of mark bytes and seizure bytes at the beginning of a burst.

2) Layer II MMB MsgType is ranged between 1 and 5 according

to GR-1273-CORE.

Layer III Payload Frame format: (Handled by the host)

SMF: Single Message Format. GR-30-CORE
MMF: Multiple Messages Format. GR-30-CORE

<mmmmmm e Layer III MMF Payload Format ——--=--———————————————————————————— >
<mmmmm - Message #1 —--—-——-——-——- > <——mmmmm Message #2 —-——-———-——-——- > ... N Mesgs->
Fo—m - Fo—m Fo—m Fo—m - Fo—m Fomm I +
MMF | ParamType | ParamlLen | Params Words | ParamType | ParamlLen | Params Words |...]| N |
tommm tommm e ———— R Fommm tomm - R + tom————— +
<mmmmmmm o Layer III SMF Payload Format ----—---—---—------—--—-—-——-—————\—~—~—— >
Kmmmm o m Single Message —————-----------———-—————— - >
tom - Fomm e e +
SME | Application specific message
Fo—m - Fo—— B et et e e e e +

MMB framing format, is based upon GR-30-CORE, except that it supports for up to 5 messages aggregated in the same
Fsk burst. That speeds up transmission by not having to repeat the preamble before each message. Each aggregated
message must be separated by 0 or N mark bytes immediately followed by the next message.

6.2.2.2.8.5 Reception flow

The next diagram will show the API usage doing Fsk reception. The VP resource is initially opened as an IVR
resource with Fsk auto-reception enabled. The server in this example is GR-1273-CORE ADSI compliant and
therefore sends multiple messages burst (MMB). To act as an ADSI compliant CPE, the acknowledge digit has been
configured as DTMF-A. After an undetermined time, the server needs to send Fsk data to the CPE and therefore sends

a TAS signal.

6.2.2.2.8.5.1 Five Adsi messages reception in a single Burst (MMB)

Host TB640 acting as ADSI CPE Voice ADSI Server
Channel
1 | Host knows Fsk datais | € Sends TAS detection event € TAS
to be received TB640_MSG_ID_VP_TONE_NOTIF_DETECTION
- TB640_VP_DIGIT_TYPE_FSK_TAS
Copyright © 2002-2008 by TelcoBridges inc. Page 81

TB640 User's guide CONFIDENTIAL 9000-00002-2H

2 Fallback in Fsk reception
3 Sends DMTF-A as TAS ack = DTMF- | Server
A=D> identifies the
CPE to be
ADSI
compliant and
sends FSK
ADSI data
4 | Reception of message | € Sends decoded Fsk message 1
1/5 of the burst TB640_MSG_ID_VP_FSK_NOTIF_RECEIVE
5 | Reception of message | € Sends decoded Fsk message 2
2/5 of the burst TB640_MSG_ID_VP_FSK_NOTIF_RECEIVE € Fsk | Sends MMB of
6 | Reception of message | € Sends decoded Fsk message 3 MMB 5 consecutives
7 | Reception of message € Sends decoded Fsk message 4 burst
4/5 of the burst TB640_MSG_ID_VP_FSK_NOTIF_RECEIVE
8 | Reception of message € Sends decoded Fsk message 5
5/5 of the burst TB640_MSG_ID_VP_FSK_NOTIF_RECEIVE
9 | Sends ack telling all 5 | Sends DTMF “D5” = DTMF | Reception of
messages were And “D5” =» | acknowledge
received correctly. VP resource falls back into “voice
Send DTMF “D5” with | mode” for normal operation
voice fallback flag set
>
TB640_MSG_ID_VP_FSK_SEN
D_DIGIT

6.2.2.2.8.6 Transmission flow

The next diagram will show the API usage doing Fsk transmission. The VP resource is initially opened as an Fsk
resource in transmission mode. The CPE in this example is an ADSI GR-1273-CORE compliant device and therefore
is capable of receiving multiple messages in a single burst (MMB). The TB640 offers ping-pong buffer interface for
transmitting multiple messages in a single burst. Therefore, it is able to queue a maximum of 1 message while
transmitting another one. Therefore, when a multiple messages burst is to be transmitted, it is necessary to wait for the
first message completion event before sending the third message. Then, it is necessary to wait for second message
completion event before sending the fourth one, and so on. In the following example, the host wants to sends data to
CPE and the total payload fits in 3 messages.

6.2.2.2.8.6.1 Three Adsi messages transmission in a single Burst (MMB)

Host TB640 acting as ADSI Server Voice ADSI CPE
Channel

1 | Sends TAS Sends TAS = TAS = | CPE detects
TB640_MSG_ID_VP_FSK_SEN .
I TAS signal

2 | Host identify CPE to be | € Sends DTMF A detection event €« € Sends TAS
ADSI compliant, and TB640_MSG_ID_VP_TONE_NOTIF_DETECTION | DTMF- | acknowledge
therefore. will use a - TB640_VP_DIGIT_TYPE_DTMF_DIGITA A
MMB to speed up
transfer.

Page 82 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

CONFIDENTIAL

TB640 User's guide

3 | Sends message 1/3 of | Encode message 1/3 and transmits it
the burst = >
TB640_MSG_ID_VP_FSK_TRA
NSMIT
4 | Sends message 2/3 of | Queue message 2/3 until first message
the burst =» is completely sent
TB640_MSG_ID_VP_FSK_TRA
NSMIT
And waits for message Fsk Receives MMB
1/3 end event MMB of 3
5 | Receives message 1/3 € Sends message 1/3 end event ADSI consecutives
end notification, TB640_MSG_ID_VP_FSK_NOTIF_END burst ® | messages
Encode message 2/3 and transmits it
in the same burst =
6 | Sends message 3/3 of | Queue 3/3 message until second
the burst =» message is completely sent
TB640_MSG_ID_VP_FSK_TRA
NSMIT
Waits for message 2/3
end event
7 | Waits for message 3/3 | € Sends message 2/3 end event
end event TB640_MSG_ID_VP_FSK_NOTIF_END
Encode 3/3 and last message and
transmits it in the same burst =
8 | Host knows € Sends message 3/3 end event
transmission is finished | TB640_MSG_ID_VP_FSK_NOTIF_END
and waits for CPE
acknowledge
9 | Reception of € Sends DTMF “D3” detection event | € Acknowledges
TB640_MSG_ID_VP_TONE_NOTIF_DETECTION
acknowledge - TB640_VP_DIGIT_TYPE_DTMF_DIGITD PTl\,/,[F all three
TB640_MSG_ID_VP_TONE_NOTIF_DETECTION D3 messages
- TB640_VP_DIGIT_TYPE_DTMF_DIGIT3 € Sends
DTMF “D3”
6.2.2.2.8.7 Transmission and reception flow

The next diagram will show the API usage doing Fsk transmission and reception on the same VP resource. The VP
resource is initially opened as an Fsk resource in transmission mode. The CPE in this example uses a custom protocol
enabling two way Fsk data exchange. The custom protocol is a simple one in which the server initiate the CPE
reception thru a TAS signal, then sends a simple message burst, exchange acknowledges with the CPE, and then
receives Fsk data from the CPE.

6.2.2.2.8.7.1 Two-Way Fsk transfer

Host TB640 acting as ADSI server Voice Custom CPE
Channel
2 | Sends TAS Sends TAS = TAS = | CPE Receives
TB640_MSG_ID_VP_FSK_SEN TAS Signale
D DIGIT
5 | Host receives TAS € Sends DTMF 1 detection event <« € Sends TAS
aclnauwrledaes and TB640_MSG_ID_VP_TONE_NOTIF_DETECTION NTME- aclnauwrledae

Copyright © 2002-2008 by TelcoBridges inc. Page 83

TB640 User's guide

CONFIDENTIAL

9000-00002-2H

acknowledge and - TB640_VP_DIGIT_TYPE_DTMF_DIGITI DTMF- | acknowledge
knows CPE is able to 1 and at the same
receive one message time specifies it
is ready to
receive only
one message
6 | Sends 1 message = Encode message and transmits it =» Fsk Fsk message
with flag set to fallback ADSI received
in reception mode after burst =
tranmission
TB640_MSG_ID_VP_FSK_TRA
NSMIT
11 | Host knows € Sends message end event
transmission has ended | TB640_MSG_ID_VP_FSK_NOTIF_END
and now
waits for CPE Falls back in Fsk reception mode
acknowledge
12 | Host receives € Sends DTMF 1 detection event € €
acknowledge and waits T';‘Sggzmicpjﬂ—c‘gﬁggg_—g;’;gﬁ}gffTION DTMF- | Acknowledges
a for a message coming “1” the message
from the CPE
14 | Successful reception of | € Sends decoded Fsk message € €
1 Fsk message TB640_MSG_ID_VP_FSK_NOTIF_RECEIVE Fsk Sends 1 Fsk
ADSI Message
burst and waits for
server
acknowledge
14 | Sends DTMF-1 Sends DTMF “1” =» > Reception of
}")_Bgé:(ﬂ;_l l\:SG_ID_VP_FSK_SEN PIT,MF_ acknowledge

To acknowledge
received message

Page 84

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

6.2.2.2.8.8 Fsk API

CONFIDENTIAL

TelcoBridges API usage follows. The section covers some of the main API call regarding Fsk.

6.2.2.2.8.8.1 Opening Fsk resource in V.23 reception mode

TBX_RESULT API

PTB640 MSG_VP_GROUP_ALLOC
TBX_MSG_HANDLE

TBX_FILTER HANDLE

TB640 VPGROUP HANDLE

TB640 RESOURCE_HANDLE
PTB640 VP_GROUPO RES PARAMS

Result = TBXGetMsg (in hLib,
if (TBX RESULT FAILURE
{

(Result))

TBX EXIT ERROR (Result, O,
}
/* Clear the buffer... */
memset (TBX MSG PAYLOAD POINTER
/* Set the message header */
TBX_FORMAT MSG_HEADER (

hMsg,

TB640 MSG_ID VP GROUP ALLOC,

TBX MSG _TYPE REQUEST,

sizeof (*pMsgVpResAlloc),

(hMsgqg) ,

sizeof (*pMsgVpResAlloc),

Result;
pMsgVpResAlloc;
hMsg;

hFilter;
hVpGroup;
hFskRes;
pParams;

&hMsqg) ;

"Get Msg Failed");

0, TBX MSG_PAYLOAD MAX LENGTH GET

hAdapter,
0,
0);
/* Fill the request */
PMsgVpResAlloc = TBX MSG PAYLOAD POINTER (hMsg);

pMsngResAlloc—>Requgst.an32Msngrsion

pMsgVpResAlloc->Request.GroupParams.GroupType

pMsgVpResAlloc->Request.un32NbResources

pParams =
pParams->un64UserContextl
pParams->ResType
pParams->TdmFsk.Level
pParams->TdmFsk.Type
pParams->TdmFsk.Mode
pParams->TdmFsk.unl6NumMarkBytes =
pParams->TdmFsk.unl6NumSeizureBytes =

= 1;
TB640_VP_GROUP_TYPE 0;
= 1;

&pMsgVpResAlloc->Request.aResourcesParam[0] .Group0;

= un64UserCtx;

= TB640_VP_RES_TYPE TDM FSK;

TB640 User's guide

(hMsqg)) ;

= TB640 VP FSK LEVEL DEFAULT;

= TB640_VP_FSK_TYPE V23;
= TB640_VP_FSK_MODE_RX;

TB640 VP _GROUPO FSK _NUM MARK BYTES MAX VALUE;

TB640 VP GROUPO FSK NUM SEIZURE BYTES MAX VALUE;

1000 /*ms*/, &hMsgqg);

Result = TBXSendMsg (in hLib, hMsg, &hFilter);
Result = TBXReceiveMsg (in_ hLib, hFilter,
pMsgVpResAlloc = TBX MSG PAYLOAD POINTER (hMsg) ;
Result = pMsgVpResAlloc->Response.Result;

hFskRes = pMsgVpResAlloc->Response.ahResources[0];
hVpGroup = pMsgVpResAlloc->Response.hVPGroup;

Copyright © 2002-2008 by TelcoBridges inc.

Page 85

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.2.2.2.8.8.2 Opening VR resource with B202 Fsk Auto-Reception

TBX_RESULT API Result;

PTB640 MSG VP GROUP ALLOC pMsgVpResAlloc;
TBX_MSG_HANDLE hMsg;
TBX_FILTER HANDLE hFilter;

TB640_ VPGROUP_ HANDLE hVpGroup;

TB640 RESOURCE HANDLE hIvrRes;
PTB640_VP_GROUPO_RES_PARAMS pParams;

PTB640 VP _GROUPO FSK RX AUTO PARAMS pFskRxAuto;

Result = TBXGetMsg (in hLib, sizeof (*pMsgVpResAlloc), &hMsqg);
if (TBX RESULT FAILURE (Result))
{
TBX EXIT ERROR (Result, 0, "Get Msg Failed");
}
/* Clear the buffer... */
memset (TBX MSG PAYLOAD POINTER (hMsg), 0, TBX MSG PAYLOAD MAX LENGTH GET (hMsg));
/* Set the message header */
TBX FORMAT MSG HEADER (
hMsg,
TB640_MSG_ID_VP_GROUP_ALLOC,
TBX_MSG_TYPE REQUEST,
sizeof (*pMsgVpResAlloc),
hAdapter,
0,
0);
/* Fill the request */
pMsgVpResAlloc = TBX MSG PAYLOAD POINTER (hMsg);

pMsgVpResAlloc->Request.un32MsgVersion = 1;
pMsgVpResAlloc->Request.GroupParams.GroupType = TB640_VP_GROUP_TYPE O;
pMsgVpResAlloc->Request.un32NbResources = 1;

pFskRxAuto = &pMsgVpResAlloc->Request.GroupParams.Group0.FskRxAuto;

pFskRxAuto->fEnabled = TBX_TRUE;

pFskRxAuto->Type = TB640_VP_FSK TYPE VB202;
pFskRxAuto->Level = TB640 VP FSK LEVEL DEFAULT;
pFskRxAuto->TasAcknowledge.Digit = TB640 VP DIGIT TYPE DTMF DIGITA;
pFskRxAuto->TasAcknowledge.Level = TB640 VP TONE LEVEL MINUS 10 DBM;

pFskRxAuto->TasAcknowledge.un320nTimeMs = 70;

pParams = &pMsgVpResAlloc->Request.aResourcesParam[0] .Group0;

pParams->ResType = TB640_VP_RES_TYPE TDM;
pParams->Tdm.Agc.fEnabled = TBX FALSE;
pParams->Tdm.Tone.fDetectionEnabled = TBX TRUE;
pParams->Tdm.Tone.fGenerationEnabled = TBX TRUE;
pParams->Tdm.Tone.fSuppressionEnabled = TBX FALSE;
pParams->Tdm.Tone.DetectionTypeMask = TB640_VP_TONE_ DETECT TYPE DTMF;
pParams->Tdm.Vad. fEnabled = TBX FALSE;

Result = TBXSendMsg (in_hLib, hMsg, &hFilter);

éééult = TBXReceiveMsg (in hLib, hFilter, 1000 /*ms*/, &hMsq);
éﬁéngResAlloc = TBX_MSG _PAYLOAD POINTER (hMsg);

éééult = pMsgVpResAlloc->Response.Result;

hIvrRes = pMsgVpResAlloc->Response.ahResources[0];
hVpGroup = pMsgVpResAlloc->Response.hVPGroup;

Page 86 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

6.2.2.2.8.8.3 Sending Fsk message in a single message burst (SMB)

User Result

User FillFskMessageFunction (
IN PTB640 VP FSK MESSAGE pFskMsg,
IN TB640_RESOURCE_HANDLE hRes);

TBX_RESULT API Result;
TBX_MSG_HANDLE hMsg;

PTB640 MSG_VP_FSK_TRANSMIT pMsgVpFskTx;
TBX_FILTER HANDLE hFilter;

Result = TBXGetMsg(pThreadCtx->hLib, sizeof (*pMsg), &hMsg2);
if (TBX RESULT FAILURE (Result))
{
TBX EXIT ERROR (Result, 0, "Get Msg Failed");
}
/* Clear the buffer... */
memset (TBX MSG PAYLOAD POINTER (hMsg), 0, TBX MSG PAYLOAD MAX LENGTH GET (hMsgq));

/* Set the message header */
TBX_FORMAT MSG HEADER (
hMsg,
TB640 MSG_ID VP FSK TRANSMIT,
TBX_MSG_TYPE REQUEST,
sizeof (*pMsgVpFskTx) ,
hAdapter,
0,
0);
/* Fill the request */
pMsgVpFskTx = TBX MSG PAYLOAD POINTER (hMsg);

PMsgVpFskTx->Request.un32MsgVersion =1;
pPMsgVpFskTx->Request.fVoiceFallBack = TBX FALSE;
PMsgVpFskTx->Request.fFskRxFallBack = TBX FALSE;
pPMsgVpFskTx->Request.fMsgEndEvent = TBX TRUE; /* We want the end event */
pMsgVpFskTx->Request.un8BurstSize = 1; /* Single Message Burst */
PMsgVpFskTx->Request.un8MsgNumber = 0;

PMsgVpFskTx->Request.hVPResource = hFskRes;

User FillFskMessageFunction(&pMsgVpFskTx->Request.FskMsg, hFskRes);
fé%SendMsg(pThreadCtx->hLib, hMsg2, &hFilter);

éééult = TBXReceiveMsg (in hLib, hFilter, 1000 /*ms*/, &hMsq);
l'ol\;léngFska = TBX_MSG_PAYLOAD POINTER (hMsgq);

Result = pMsgVpResAlloc->Response.Result;

Copyright © 2002-2008 by TelcoBridges inc. Page 87

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.2.2.3 VP group0 Applications

Some applications are a combination of the previous functions. Here are a few examples.

6.2.2.3.1 IVR

IVR requires DTMF detection on input and playing a prompt to guide the user in his decisions. This configuration uses
one VP resource.

VP Group IVR

vP | WP e | vp
IN owT IN OouT
4 L I 7

TOM TOM || Str¢am | Stream
[N owT IN ouT

\

From
From To
Playback
Caller Caller
System

Figure 39: IVR application

6.2.2.3.2 Voice recording with music

In this application, we want the user to record his voice with some music in the background. User selects music by IVR
and then the music starts, played on one resource using the Stream. The caller can then start talking or singing while
the mix of voice and music is being transferred to a recording system. When the caller presses a DTMF to stop
recording, he can then hear the recording back.

This configuration uses three voice processing resources for recording and one for playing.

Page 88 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL
VP Group Mix Conferencing
Conference
\f | |
P V VP VP P
IF owT I ouT I*N ouT
|
|
TDOM | TOM || Strdam Strgam Stream Str}am
IN owT | ouT IN ouT
* R ' d
Music ecor
DTMF * Music To From Voice +
Voice Callar MisSTE T
From Playback usic to
Caller System playback
system
VP Group Play and Record
VP VIP VP VP
I* ouT I ouT
Y v
TOM | TOM || Strdam | Stream
IIN owT IIN ouT
\J .
Voiga+ Yolked
DTMF \usic Music
From From
Caller cajier Playback
System

Figure 40: Voice recording with music application

6.2.2.3.3 Recording a conference

In this application, we want to record a conference. To do this, you must assign one more stream member in the group

and it will be used for recording.

Copyright © 2002-2008 by TelcoBridges inc.

TB640 User's guide

TB640 User's guide CONFIDENTIAL
VP Group Mix Conferencing
Conference
P P P P VP P
I ouT I ouT IAN ouT
|
TDOM TIiM TDM TOOM || Stream Striam
I ouT IN owT IN ouT
\J \J \J
Caller 1 Caller 2 Record

Figure 41: Recording a conference

6.2.2.3.4 Background Music application

In this application, we want background music to be played while callers are talking together. To do this, you assign on
TDM member per caller and you must assign one more stream member in the group for playing the music.

VP Group Background Music

Conference
P P P VP
I ouT I ouT I ouT
|
T[LM TEIM T[LM T[IM Strtam Stréam
I ouT I ouT I OouT
\J \j
Caller#1 Caller#2 Music

Figure 42: Background Music Application

Page 90

9000-00002-2H

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

6.2.2.4 Voice processing groupl (Volp) capabilities

Voice processing group type 1 is implemented using a Volp mezzanine and is used when the application requires one
or more voice services listed below:

. TDM to packet conversion using different types of codecs (G.711, G.723.1, G.726, G.728,G.729AB,
G.729EG, AMR, EVRC) and associated functions (VAD, jitter buffers, comfort noise generation, etc).

. Echo cancellation up to 128 msec of echo tail [inline within a ‘TDM to packet’ or pure TDM]

. Fax relay over Volp network (RFC2833)

Since each voice processing function may have an influence on the voice according to its location within the processing
block, overview diagrams are provided below of all supported types of voice processing resources for group type 1

(Volp). More details about their configuration parameters are provided within the voice processing API document.

Echo canceller

Volume Tone detection

™ control “Tsin “Soi ™| Tone suppression| VAD
|
41 Volume t«4— Tone generation & Rout_ B Y Rin 4 Echo digital gain 4—’7

control

hTdmResource Toward stream resource

Figure 43: VP groupl TDM resource schematic (when used in conjunction with a stream resource)

Tone detection

hTdmResource

Tone generation

Figure 44: VP groupl TDM resource schematic (when used standalone)

. Voice and
Volume o | Tone detection > silence
control | Tone suppression o -
detection

hTdmResource

Volume .
-t Tone generation

control

Figure 45: VP groupl TDM flowthru resource schematic

Tone detection Decoder

Jitter buffer " Tone regeneration > CNG

hStreamResource Toward TDM resource

Encapsulator Encoder J

Figure 46: VP groupl stream resource schematic

Copyright © 2002-2008 by TelcoBridges inc. Page 91

TB640 User's guide

FP

hTdmT38Resource

1

Figure 47: VP groupl TDM T.38 resource schematic

No TDM function *_}

No TDM function

CONFIDENTIAL 9000-00002-2H

Toward stream T.38
resource

Packet loss |

concealment

» Event detector

> Modulator L

hStreamT38Resource

Toward TDM T.38 resource

L Reduncancy & Packetization

Demodulator J

Figure 48: VP groupl stream T.38 schematic
Echo canceller (near)
Volume - — — ——p»{ Tone detection
control Sin * Sout
hTdmNearResource :
|)
41 volume | o | 1one generation |« Rt 4R Echo digital gain
control
Echo canceller (far)
Volume i
o >_S - = ;uTﬂ Tone detection
hTdmFarResource :
| .
41 Volume | o | Tone generation |a— R 4 Rl o | Echodigital gain <
control

Figure 49: VP groupl TDM echo schematic

Page 92

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

6.2.2.4.1 VP groupl resource usage examples

6.2.2.4.1.1 One VP TDM resource (flowthru) in a VP group

A TDM stream comes-in, is processed, then comes out on the same VP resource. This is usually a simplex connection
that needs to have the DTMF tones monitored or to be able to generate a tone at any time.

In-band TDM

TDM Tone TDM Tone Tone detection
detection Generation & Generation
VP VP VP VP VIP VIP

I*l OlIJT I¢N DW.IT III O:;lT
TOM | TOM || TOM | TOM || TQM | TOM
I ouT IN owT | owuT

Y

\/

Figure 50: VP group using VP TDM resource (flowthru)

6.2.2.4.1.2 One VP TDM resource (pure-TDM) in a VP group

A TDM stream comes-in and is processed (i.e. tone detection). The resource can also be used to generate stream out
to the TDM (i.e. tone generation). But the traffic from the TDM is not looped back onto the TDM output. A typical
example of such resource is to detect call progress tones which only required the voice stream from the TDM (i.e. no
need to put the resource inline on the TDM path. The only need to is ‘fork’ the TDM path to such resource).

TDM Tone TDM Tone
detection Generation
VP VP VP VP
| ouT IN owT
3 4
TOM TDM TDM TOM
| ouT IN owT

| \

Figure 51: VP group using VP TDM resource (pure-TDM)

Copyright © 2002-2008 by TelcoBridges inc. Page 93

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.2.2.4.1.3 One VP TDM and one Stream resource in a VP group

A Stream input comes out as a TDM stream while the TDM stream input comes out as a Stream. This is to create a
TDM to Stream transfer for a Volp voice conversation, recording and/or playing streams, and other applications.

VP Group ‘Tdm to packet’

dr W o I

TOM | TOM Stréam Str¢éam
IN ouT IN ouT

\/

From TDM ToTDM Fromstream To stream
voice voice voice voice
channel channel channel channel

<

Figure 52: VP group using VP TDM and stream resources

6.2.2.4.1.4 One VP TDM T.38 and one Stream T.38 resource in a VP group

A Stream input (data) comes out as a TDM T.38 stream (modulated) while the TDM stream input (modulated) comes
out as a Stream (data). This is to create a TDM to Stream transfer for a fax transmission.

VP Group ‘Fax relay’

P VP VP
ouT II#I (;/ET |

THPM | TOM Str¢éam |Stréam
IN ouT IN ouT

\

FromTDM ToTDM Fromstream To stream
fax data fax data
channel channel

(RFC2833) (RFC2833)

<

fax channel fax channel

Figure 53: VP group using VP TDM T.38 and stream T.38 resources

Page 94 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

6.2.2.4.1.5 Two VP TDM echo resources in a VP group

A first TDM input comes out as a second TDM stream while the second TDM stream input comes out as the first TDM
stream. This is to create a full-duplex TDM echo canceller that can connect to any other TDM resource of the blade.

VP Group ‘TDM echo canceller’

P VP W
O\1JT uh (;/lle IN
THOM | TOM | | TOM | TOM
IN | opT IN | OopT

\

FromTDM ToTbm FromTDM ToTDM
voice voice voice voice

channel channel channel channel

(nearend) (nearend) (farend) (farend)

Figure 54: VP group using two VP TDM echo resources

6.2.2.5 VP groupl functions

6.2.2.5.1 Tone detection, suppression, generation and relay

Depending on the schematic of VP resource used (refer to section 6.2.2.4), tone detection/suppression/generation/relay
can be configured to process DTMF tones. When a tone is detected, the

TB640 MSG ID VP TONE NOTIF DETECTION event will be generated to the host application. If the ‘tone
validation’ option is configured, the TB640 MSG ID VP TONE NOTIF CADENCE DETECTION event will be
sent once the tone has respected proper timing constraints (which are configurable when the VP resource is allocated).
When the tone stops, the TB640_ MSG ID VP_TONE NOTIF_STOP event will be generated. If suppression is
enabled, the tone will be removed from the voice path and silence will be inserted. You also get a timestamp in
millisecond for each of those events. This can be compared to any previous event received with this timestamp.

When the ‘tone relay’ option is configured in the ‘“TDM toward stream’ direction, the tone will be automatically
converted to a data packet and sent to the network. Note that the user still has to use the ‘tone suppression’ option he
does not want the in-band tone to be encoded in the voice stream as well. When the ‘tone regeneration’ option is
configured in the ‘stream to TDM’ direction, a tone data packet will be automatically converted to a TDM tone.

The message TB640 MSG ID VP_TONE PLAY is used to generate in-band tones onto VP resources. Both TDM
and stream resource can generate such tones. The user needs to specify the frequencies (in hertz), amplitude (in dbm)
and duration of the tone. If the duration is infinite (value of -1), the TB640 MSG ID VP TONE_STOP must be used
to stop the tone from being played. To generate a cadenced tone (busy, ringback, reorder, etc.), in addition to the
frequency and amplitude, the on and off time must be specified and the TB640 MSG _ID VP_TONE_STOP message
must be used to stop the tone. Segment tones can also be generated by a specific sequence of frequencies with their on
and off times. Refer to the voice processing API document for more details.

Copyright © 2002-2008 by TelcoBridges inc. Page 95

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.2.2.5.2 Call progress tone detection

6.2.2.5.2.1 Call progress basics

Call progress tones are special tones sent by the network to inform the listener about an ongoing call status. VP
Groupl resource are able to detect some of those tones namely ringback, busy, dial and number unobtainable (also
referred to as ‘NUT’). The dial tone is used to indicate to the listener that the line is ready for signaling (i.e. to enter
his ‘called’ number). The ringback tone is used to indicate that the remote side has been reached and that his phone is
ringing. This tone is usually sent by the local switch (not the remote-end switch). Instead of the ringback tone, the
network can send a busy or NUT tone to indicate respectively that the remote-end is already on another call or that the
remote end is unreachable.

Call progress tone characteristics varies from one country to the other in term of frequency used, cadence and signal
power. This is why the user needs to configure the VP groupl channel about the call progress tone it should be
expecting. For example, listed below are the characteristics of North America, China and Korea call progress tones:

Table 5 — North America/USA call progress tone definitions

Tone ID Frequency #1 Frequency #2 Power Cadence
Dial tone 350Hz 440Hz -13 dBmo Continuous
Busy tone 480Hz 620Hz -24 dBmo 0.5s ON, 0.5s OFF
Ringback tone 440Hz 480Hz -19 dBmo 2s ON, 4s OFF
NUT 480Hz 620Hz -24 dBmo 0.25s ON, 0.25s OFF
Table 6 — China call progress tone definitions
Tone ID Frequency #1 Frequency #2 Power Cadence
Dial tone 450Hz None -10 dBmo Continuous
Busy tone 450Hz None -10 dBmo 0.35s ON, 0.35s OFF
Ringback tone 450Hz None -10 dBmo 1s ON, 4s OFF
NUT 450Hz None -9 dBmo 75ms ON, 100ms OFF
75ms ON, 100ms OFF
75ms ON, 100ms OFF
75ms ON, 400ms OFF
Table 7 — Korea call progress tone definitions
Tone ID Frequency #1 Frequency #2 Power Cadence
Dial tone 350Hz 440Hz -10 dBmo Continuous
Busy tone 480Hz 620Hz -20 dBmo 0.5s ON, 0.5s OFF
Ringback tone 440Hz 480Hz -15 dBmo 1s ON, 2s OFF
NUT None None None Not used, IVR prompt are
usually sent. Fast-busy signal
is also used
Fast-busy* 480Hz 620Hz -20 dBmo 0.3s ON, 0.2s OFF

* Fast-busy is not one of the 4 tones that the Volp Groupl can detect using the pre-defined countries but it can be
configured to replace one of those four tones using the custom country parameters (explained below).

VP Groupl resource has predefined set of parameters already configured such as the user only needs to specify the
country code upon allocation. It is also possible to specify different country codes for the different tones within the
same resource. This is to allow international calls where the ringback tone is generated by the local switch and the

other tones are generated by the foreign switch. For example, a USA to China call would require the ringback tone to
be configured as ‘USA’ while the other tones would be configured as ‘China’. Upon detection, the TB640 will send a
notification (TB640 MSG ID VP TONE NOTIF CADENCE DETECTION) toward the application with the
identifier of the VP resource generating the event and the tone that was detected (e.g.

TB640 VP DIGIT TYPE CALL PROGRESS DIAL TONE).

Page 96 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

6.2.2.5.2.2 Custom call progress tones

Under some circumstance, an application may require detecting more tones than those 4 pre-defined tones or need to
replace the characteristics of basic call progress tones. The user can create up to 8 custom country call progress tone
characteristics in the non-volatile memory using message TB640 MSG ID VP _GROUP_SET NVPARAMS (see API
reference guide for a more detailed description). Within the Groupl NvParam structure, the user needs to configure
the bi-quad filter parameters and cadence characteristics of all 4 tones. Adjusting the filter parameters is not a trivial
task and may require the help from the Telcobridges’ support team. Unspecified behavior can occur if wrong or
contradictory parameters are entered.

& Although the four types of tone are ‘named’, nothing prevents the user to replace the NUT tone
characteristics with a ‘fast-busy’ for a specific application. The only thing to remember is that the
notification received upon detection will be a tone of type
TB640 VP DIGIT TYPE CALL PROGRESS NUMBER UNAVAIL TONE.

6.2.2.5.3 Echo cancellation

Two types of echo exist in communication systems: electrical and acoustical echo. The former is created by an
impedance mismatch of 4-wire phone circuits to 2-wire phone circuits. The reflection created by this mismatch is an
attenuated version of the received signal and is sent back onto the wire. The later is created when the microphone of a
phone or handset is capturing a portion of the output from the speaker (i.e. cellular phone, videoconference systems,
etc). The actual feedback (echo) becomes audible when the round trip delay of the voice path begins to exceed
15msec. Echo cancellation is required in most Volp applications due to the packetization delay of converting from the
TDM domain to the packet domain; not that this delay creates the echo but it multiplies the effect of echo currently
present on the TDM-side making it more audible (thus more disturbing) for full-duplex voice conversations. Echo
can also create situations of false tone detection since a user could ‘hear’ the echo of a tone he generated and, thus,
detect a tone

Echo canceller

—————— _>
Sin % Sout

Echo |
source |
|)
<« Rout_ 4 __Rng,

Figure 55: Unidirectional echo canceller

In order to cancel the echo, the echo canceller must first try to locate the echo within the signal. Being inserted serially
in the full-duplex connection, it does so by comparing the history of the signal sent toward the echo source and the
resulting signal received from the echo source. Once the adaptation is done and that the canceller has locked onto the
echo, it can subtract the injected echo from the signal sent by the echo source. The faster the echo canceller can lock
onto the echo pattern, the faster the echo part will be removed from the voice stream and the conversation quality will
improve (i.e. low convergence delay). On the other hand, the echo canceller still needs to be careful not to remove any
valid component. Some situations such as double-talk (i.e. when both persons speak at the same time) require special
processing to get a good quality conversation. The echo canceller may also have to adapt to the echo as it is possible
for the echo to vary in terms of delay and length. This will require the canceller to re-locate the echo position within
the stream until it has a new lock. More complex voice setup such as three-way conferencing may create multiple echo
paths as the delay between each participant may differ. This has an impact on the canceller location function as it will
receive different feedback and delays from the different participant. Furthermore, when the echo canceller detects that
the echo source does not feed any voice (i.e. silence period), it can decide to inject comfort noise in the other direction
instead of try to cancel the echo. This last function is done by an NLP (non-linear processor).

Copyright © 2002-2008 by TelcoBridges inc. Page 97

TB640 User's guide CONFIDENTIAL 9000-00002-2H

ECA ECB
F__ —_—
A P (O ——— = —— —_——— 4
E Sin * Sout Rin _r Rout E
Echo | | Echo
source | | source
it A | . . B .
« |Rout_ 4 _Rin [Sout N Sin o -

Figure 56: Bidirectional echo cancellation

In a network, an endpoint is responsible to cancel the echo generated on its TDM-side. Figure 56 shows two echo
cancellers located each side of an IP network. Echo canceller A is responsible to cancel the echo from the echo source
A. Tt won’t cancel the echo generated by the source B. Therefore, both echo canceller are unidirectional and are
inserted in-line of the conversation. In a voice processing group where a TDM resource and a stream resource are
present, an in-line echo canceller is also present (if enabled) to cancel the echo injected on the TDM side of the
connection (refer to schematic in Figure 43). It therefore assumes the remote Volp end also cancels the echo on its
side.

In the case where no Volp stream is involved (no packet network), it is still possible to use the echo canceller of the
Volp mezzanine by creating a voice processing TDM echo group containing two echo resources (i.e. near and far) as
shown by Figure 49. This will create a voice processing entity capable of being either unidirectional or bidirectional
echo canceller entity. The application is required to connect both TDM full-duplex resources of the entity to each side
of the voice conversation.

& Do not confuse “unidirectional” or “bidirectional” attributes with the attributes “half-duplex” and
“full-duplex”. An echo canceller is ALWAYS full-duplex as it required both input and output
stream data to do its job. But it can be unidirectional or bidirectional depending if it is processing
only local and/or remote echo on a stream.

For more information about configuration parameters of echo canceller resource within a voice processing group,
please refer to the Voice processing API document.

& Echo tail length is usually a characteristic limiting the total number of echo canceller resources in a
Volp equipment. With the current implementation, each voice processing group TDM<->stream has
an inline echo canceller with 128 msec echo tail length without any penalty on the total number of
resource available.

& Echo canceller may affect the content of the voice stream. Thus, it is highly recommended to turn it
off when the connection is transporting data such as BERT, fax or modem signal. A 2100Hz tone
with phase reversal is usually generated in-band to signal every echo canceller within a voice path to
disable. Some tones may also indicate early stages of a modem/fax connection which would require
disabling the echo canceller.

6.2.2.5.4 Codecs

As in the TDM network architecture, the service providers are always trying to optimize the bandwidth usage of their
transport infrastructures. Numerous standards exist for compression algorithms in order to achieve an acceptable
voice quality while trying to reduce bandwidth usage. Depending in which environment a Volp product is deployed, it
may need to interoperate with different codecs (coder/decoder) in order to transport voice streams. Other parameters
such as the packet duration have an influence on the voice quality and bandwidth usage. Indeed, using a large packet
duration (i.e. 160msec) means that the Volp device will gather more TDM samples into a single packet before sending
it out of the IP network thus reducing the overhead of the Ethernet/IP/UDP/RTP header. Unfortunately, this will also

Page 98 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

create a latency of the same duration amount since the receiver will hear the voice delayed by the same amount as the
packetization time.

Therefore, a Volp equipment needs to support a wide variety of codecs and packet duration in order to be compatible
with almost every type of network or applications. All supported codecs by the voice processing group 1 are listed
below. This list does not contain the amount of codecs available for the Volp product as it depends on the hardware
configuration and on runtime parameters (such as packet duration and other initialization parameters). This
information is detailed in the “TBVoipWizard.html” document included in the release package’s documentation
directory.

Table 8: Volp supported codec list

Codec type | Packet duration supported (msec) | Complex | Wireline | Wireless | CDMA
Clear channel 5, 10, 20, 30 No N
G.711 5, 10, 20, 30 No N
Pass-thru 5, 10, 20, 30 No N
G.726 10, 20, 30 No N
G.723.1 30, 60 Yes N
G.728 5, 10, 20, 30 Yes N
G.729AB 10, 20, 30 Yes N
G.729EG 10, 20, 30 Yes v
AMR 20, 30 Yes N
EVRC 20, 30 Yes N N
QCELP-8K 20, 30 Yes v v
QCELP-13K 20, 30 Yes v v
iLBC-13K 30,60 Yes v
iLBC-15K 20,40 Yes v
T.38 Fax - Yes N

The document “TBVoipWizard.html” will actually give the number of channels an application can allocate depending
on which codecs are used at the same time. These density values are predictable and reproducible meaning that neither
the history of channel opening/closing nor the order in which the codecs are used has any effect on the overall amount
of available channel. But in order to use the full potential of the Volp devices, the on-board software needs to know
the type of application (i.e. codec usage) in order to distribute the load properly on the different devices.

It is always easier to tell which codec types will be used in a specific application (usually dictated by service providers)
but it is not that easy to predict the actual number of channels that will use each codec types. Therefore, many
allocation algorithms are available that will make the blade to distribute the load differently on the Volp devices and
lead to more optimized performances (i.e. channel density).

& The ‘clear-channel’ codec will pass IP data directly to the PCM stream thus bypassing all other
subsystems. For example, echo canceller will not work when using this codec.

& The ‘pass-thru’ codec is equivalent to G.711. It is used for systems requiring different payload type
values to differentiate G.711 audio from G.711 fax/modem pass-through.

Copyright © 2002-2008 by TelcoBridges inc. Page 99

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.2.2.5.4.1 Allocation algorithm 1 (mixed codecs)

This algorithm assigns the different VP Groupl resources to each device in a first-come, first-served fashion. This
algorithm may mix any codec types on the same device. This algorithm is better suited for customer's application (or
environment) where it is impossible to predict how many instances of a specific codec will be used. It will ensure a
deterministic allocation of channels. The application designer can then use the values from this wizard to know how
many Volp channels will be available.

& This algorithm can be understand as an OR type algorithm in the sense that the TBVoipWizard.html
gives the maximum of each codec if all other aren’t being used. For Example, you get 343 G711_20
per Voip device, OR 128 T38, not both at the same time.

This algorithm is better suited for:
1. Application (or environment) where it is impossible to predict how many instances of a specific codec will be
used.
2. Application (or environment) that needs all channels in a specific codec, and at a later point in time, needs all
channels in another codec.
3. Application (or environment) making MOSTLY uses of the following codecs:

e G711.5
e (G7231
e AMR
e EVRC
e (QCELP8
e QCELP13
e SMV
e EFR
o T38
The above list of codecs can be used without any lost of density efficiency when mixed with any other
codecs NOT in this list.
4. Application (or environment) making ONLY uses of the following codecs:
e G711.20
e G711_10
e G711 5
e (726 20
e G726 10

The above list of codecs can be used without any lost of density efficiency when mixed with other codecs
ONLY from this list.

Page 100 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

6.2.2.5.4.1.1 Coding your application using algorithm 1 (mixed mode):

The algorithm 1 allows for more flexibility in terms of codec availability. This flexibility imposes the software
designer to use a certain algorithm in order know channel availability. The problem is that a voip device supports up to
343 channels of G711 _20 or up to 128 T38 channels or up to 66 channels of G728. Allocating one T38 channel leaves
343 — (343/128) = 340 channels of G711 _20 free for allocation. So one could think the cost of a T38 channel is more
or less 3 G711 _20. But the cost is also 66/128 = 0.5 G728 channels. The cost approach is not appropriate since we are
not only dealing with 3 codecs, but over 15.

The best approach on this problem is to give each codec a weight. To do so, we choose the codec with the highest
density, which is G711_20 at 343 channels per Voip device. All others codecs are weighted against G711 _20. In the
following example, all weights are also multiplied by 1000 to prevent usage of floating points.

MAX CHANS_PER_VOIP 343 (maxnumber of G711_20 channels per devices)
MAX WEIGHT _PER VOIP 343000 (MAX CHANS PER VOIP*1000)
Codec Maxper voip Calcul Weight
device*

G711 20 343 MAX WEIGHT PER VOIP/343 1000

G711 10 217 MAX WEIGHT PER VOIP/217 1581

G711 5 128 MAX WEIGHT PER VOIP/128 2680

G726 20 217 MAX WEIGHT PER VOIP/217 1581

G726 10 170 MAX WEIGHT PER VOIP/170 2018

G729AB 154 MAX WEIGHT PER VOIP/154 2227

G723 1 128 MAX WEIGHT PER VOIP/128 2680

G728 66 MAX WEIGHT PER VOIP/66 5197

G729EG 71 MAX WEIGHT PER VOIP/71 4831

EFR 120 MAX WEIGHT PER VOIP/120 2858

AMR 96 MAX WEIGHT PER VOIP/96 3573

EVRC 96 MAX WEIGHT PER VOIP/96 3573

QCELP8 96 MAX WEIGHT PER VOIP/96 3573

QCELP13 72 MAX WEIGHT PER VOIP/72 4764

SMV 84 MAX WEIGHT PER VOIP/84 4083

T38 128 MAX WEIGHT PER VOIP/128 2680

* (Values taken directly from TBVoipWizard.html, and are subject to changes)

Example, let’s say we have only one Voip device:
We want to allocate 30 G729E, and 10 G728, how much space is left?
MAX WEIGHT PER VOIP - (30 * G729EG_WEIGHT) — (10 * G728 WEIGHT) =
343000 — (30 * 4831) — (10 * 5197) = 146 100
The left weight in the Voip device is 146100. We have enough space to allocate either 146 G711 20, or 54
T38, etc...

The software designer must use a total weight representing the MAX WEIGHT PER_VOIP multiplied the number of
Voip devices present on the TB640. Upon each channel allocation and channel free, the total weight must be updated
according to the respective weight of each codec. That way, the application will be able to know how much of each
codec is available for allocation at a specific time by knowing what codecs are currently being allocated.

Copyright © 2002-2008 by TelcoBridges inc. Page 101

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.2.2.5.4.2 Allocation algorithm 2 (fixed codecs)

This algorithm assigns the different VP Groupl resources in order to maximize the mixing of simple (G.711 and
(G.726) and complex codecs (all other codecs). This will end-up in having better channels density for application For
example, application switching between G.711, G.726 and G.729AB will benefit from this algorithm.

& This algorithm can be understand as an AND type algorithm in the sense that the
TBVoipWizard.html gives the maximum of each codec available at all time. For Example, you get
202 G711_20 per Voip device, AND 52 T38, both at the same time.

This algorithm is better suited for:
1. Application (or environment) where it is important to know exactly how much of each codec there is. This
algorithm RESERVES the requested amount of channels of each codecs. This algorithm is more deterministic in
a sense that codecs are statically reserved in advance.
2. Application (or environment) that needs Great Density of the following codecs list, mixed with any other codecs:
e G711 20
G711 _10
G726 20
G726 10
G729AB
G728
G729EG

6.2.2.5.4.2.1 Coding your application using algorithm 2 (fixed mode):

The algorithm 2 has a more deterministic approach in the sense that all codec are being reserved in advance. Once
properly configure, the numbers from the TBVoipWizard.html are exactly what the application can get at all time, no
matter what has been previously allocated. Thus, all the application needs to do is to remember how many of each
codecs has been allocated and keep these counts under or equal to the number of codec reserved.

Page 102 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

6.2.2.5.5 Payload type values

The RTP protocol used to transport voice across an IP network is described by RFC3550 (previous version was
RFC1889). Within the RTP header, one field named ‘PT’ (payload type) is used to identify the type of codec
information carried in the packet. A list of payload type values for each codec is defined within RFC3551.
Unfortunately, since the payload type field is only 7 bits-wide, all codecs cannot have a permanent payload type value
understood universally by all Volp systems. Therefore, some codecs have dynamic values that need to be negotiated
through a call control or session control protocol such as SIP or H.323 before the actual RTP session can take place.

In order for the voice processing groupl resource to understand the codecs for a particular network, the application
must configure the payload type values that will be recognize by this resource and assign it to a specific codec (refer to
the Voice processing API document in the stream resource section for more details on configuration fields). Assigning
the same payload value to two different codecs is not recommended and behavior may be erratic as the Volp device
won’t be able to know which codec to use for decoding a particular packet. For every channel, the application only
needs to configure the payload type values for what needs to be processes (see below for typical types to configure).
The voice processing resource will always send a notification toward the host application when a payload type different
from the currently configured payload types will be received (i.e.

TB640 MSG ID VP VOIP NOTIF PAYLOAD TYPE CHANGE).

Table 9 - Codec payload type values per RFC3551

Codec Payload type value
G.711 uLaw 0
G.723.1 4
G.711 aLaw 8
G.728 15
G.729AB 18
G.726-40 dynamic
G.726-32 2 or dynamic (depends on the network)
G.726-24 dynamic
G.726-16 dynamic
G.729EG dynamic
AMR dynamic
EVRC dynamic
QCELP dynamic

& In areal Volp public network, if the local end and remote end are not configured with the same
payload type values, the Volp device will probably drop all incoming packets due to the
invalid/unknown payload type in the received packets. Theses errors are logged into the channel
statistics. Also, when too many of those errors are seen by the device, a notification
(TB640_MSG _ID VP _NOTIF_STATUS INDICATION with status
TB640 VP _GROUP_STATUS INDICATION EXCESSIVE PAYLOAD TYPE CHANGE) is
sent to the host application informing it about the possible misconfiguration between the Volp
endpoint. At that point, it is up to the application to either fix the situation (e.g. change the payload
type values of the VP Groupl resource) or close the resource (and possibly cancel the associated
call).

Typically, only a few payload type values need to be set in order to have a fully functional Voip RTP session. The
only mandatory payload type to set is the value for the codec to use for the Voip resource. For example, if the resource
is set to use the G.728 codec, the application needs to tell the TB640 the payload type value to use when transmitting
and receiving RTP packets of G.728 audio. Optionally, other payload type values can be set to get supplementary
services out of the voice stream. Typically, the CN (comfort noise) payload type value needs to be programmed as
well if VAD (voice activity detection) is to be used. Also, the RFC2833 payload type value needs to be programmed in
order to transmit out-of-band DTMF and telephone events on the packet network.

Copyright © 2002-2008 by TelcoBridges inc. Page 103

TB640 User's guide

CONFIDENTIAL 9000-00002-2H

Table 10 shows the packet types that have fixed payload type values. These values are defined in RFC3551.

Table 10 — Payload type values assigned statically

Packet type enum

Description

TBX_MEDIA_TYPE_AUDIO PCMU

This packet type represents the G.711 ulaw codec. The payload type
value for this codec is fixed per RFC3551 [Table4] to the value 0x00.

TBX_MEDIA_TYPE_AUDIO PCMA

This packet type represents the G.711 alaw codec. The payload type
value for this codec is fixed per RFC3551 [Table4] to the value 0x08.

TBX_MEDIA_TYPE AUDIO G723 _1

This packet type represents the G.723 codec. The payload type value
for this codec is fixed per RFC3551 [Table4] to the value 0x04.

TBX_MEDIA_TYPE AUDIO G728

This packet type represents the G.728 codec. The payload type value
for this codec is fixed per RFC3551 [Table4] to the value 0xOF.

TBX_MEDIA_TYPE_AUDIO CN

This packet type represents a silence frame (or comfort noise frame)
within the RTP flow. The payload type value for this codec is fixed
per RFC3551 [Table4] to the value 0x0D.

TBX_MEDIA_TYPE_AUDIO G729AB

This packet type represents the G.729 codec. The payload type value
for this codec is fixed per RFC3551 [Table4] to the value 0x12.

® The enum TBX STREAM PACKET TYPE is equivalent to the enum TBX MEDIA TYPE. For
historical reason, the VP API uses the former enum. Any new application should be written using the

later enum.

Table 11 shows the packet types that have dynamic payload type values. The payload type value associated with it is
defined in the dynamic range of RFC3551. It means that the actual value will be negotiated using an out-of-band

protocol such as SIP or H.323.

Table 11 — Payload type values dynamically negotiated

Packet type enum

Description

TBX MEDIA_TYPE AUDIO_G726

This packet type represents the G.726 16/24/32/40kbps codec.

TBX_MEDIA_TYPE_AUDIO RED

This packet type represents the RTP frame used for redundancy
payload according to RFC2198. This type of frame can carry any
other standard RTP packet including telephony event packets (defined
below), voice packets or others. This payload type is used when tones
are configured for NOT using AAL2 redundancy. Refer to structure
TB640 VP_GROUP1 TONE PARAMS.

TBX_MEDIA_TYPE_AUDIO_TELEPHONY EVENT

This packet type represents the telephony event frame within the RTP
flow. It is primarily used when sending out-of-band DTMF packets.
These frames use the RFC2833 packet format.

TBX_MEDIA_TYPE IMAGE_T38

This packet type represents the fax relay UDPTL packet format (T.38)

TBX_MEDIA_TYPE_AUDIO_G729E

This packet type represents the G.729 EG codec.

TBX_MEDIA_TYPE_AUDIO_AMR

This packet type represents the AMR codec.

TBX_MEDIA_TYPE_AUDIO_EFR

This packet type represents the EFR codec.

TBX_MEDIA_TYPE_AUDIO CLEAR_CHANNEL

This packet type represents an RTP encapsulation where no specific
codec is used.

TBX_MEDIA_TYPE_AUDIO_SMV

This packet type represents the SMV codec.

TBX_MEDIA_TYPE_AUDIO_EVRC

This packet type represents the EVRC codec.

TBX_MEDIA_TYPE_AUDIO_QCELPS

This packet type represents the QCELP-8k codec.

TBX_MEDIA_TYPE_AUDIO_QCELPI3

This packet type represents the QCELP-13k codec.

TBX_MEDIA_TYPE AUDIO_ILBC

This packet type represents the iLBCP-13k/15k codec.

6.2.2.5.6 Mapping SIP SDP to VP Groupl resource parameters and payload types

On a SIP Voip network, the payload type values for codecs and other events are negotiated per call within the SIP
protocol. The tricky part is then to decipher the SIP SDP information in order to format the proper parameters to set in

Page 104

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

the voice processing resource. The codec and payload type values are negotiated with the SDP information but the
packet duration is not a parameter that is always part of the SDP. Typically, a well known default packet duration is
defined for almost all codec. This default can be optionally overridden by an attribute (called ptime) in the SDP
information. However, TelcoBridges has found many implementations of SIP devices that do not make use of this
parameter. Even if a VP Groupl resource can accept packets with different durations (e.g. a PCMA 60msec resource
will properly process Smsec received packets), the host application should always use the packet duration closest to the
the typical packet duration for a specific Voip network. This will avoid overloading the Voip devices with unexpected
rate of packets. This means that if the network is known to use PCMA 5msec, then all resources should be configured
to process Smsec packets.

RFC2327:
Note that RTP audio formats typically do not include information
about the number of samples per packet. If a non-default (as

defined in the RTP Audio/Video Profile) packetization is required,
the "ptime" attribute is used as given below..

RFC1890:
For packetized audio, the default packetization interval should
have a duration of 20 ms, unless otherwise noted when describing
the encoding.

encoding sample/frame bits/sample ms/frame
1016 frame N/A 30
DVI4 sample 4
G721 sample 4
G722 sample 8
G728 frame N/A 2.5
GSM frame N/A 20
L8 sample 8
L16 sample 16
LPC frame N/A 20
MPA frame N/A
PCMA sample 8
PCMU sample 8

Listed below are the mostly used SDP format an application would encounter and their corresponding packet type
configuration:

1. SIP INVITE containing PCMA, telephony events and VAD

m=audio 10332 RTP/AVP 8 101 13 < Using UDP port 10332

a=rtpmap: 8 PCMA/8000 < G.711 alaw using payload type 8

a=rtpmap: 101 telephone-event/8000 < RFC2833 for telephony using payload type 101
a=rtpmap: 13 CN/8000 < VAD comfort noise packets using payload type 13
PTB640_VP_GROUP1_STREAM PARAMS pStreamParams;

PTB640_VP_GROUPI_TDM_PARAMS pTdmParams;

pTdmParams = &(pVpGroup->aRes[0].Params.Groupl.Tdm);
pStreamParams = &(pVpGroup->aRes[1].Params.Group1.Stream);

/* Set the default values */
TB640 VP_GROUPI _TDM PARAMS DEFAULT (pTdmParams);
TB640 VP_GROUP1_STREAM_ PARAMS DEFAULT (pStreamParams);

/* Choose the codec */

pStreamParams->Codec.MediaType = TBX_MEDIA_TYPE_AUDIO_PCMA;
pStreamParams->PacketDurationMs = TBX_STREAM_PACKET DURATION_20MS;

Copyright © 2002-2008 by TelcoBridges inc. Page 105

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Page 106

/* Clear the array of payload type values */

for (un32Count=0; un32Count<TB640 VP_GROUP1 MAX PAYLOAD TYPES; un32Count++)

{
pStreamParams->aPacketProtocol[un32Count].PacketType = TBX MEDIA TYPE INVALID;
pStreamParams->aPacketProtocol[un32Count].un8TxProtocolType = OxFF;
pStreamParams->aPacketProtocol[un32Count].un8RxProtocolType = OxFF;

}

/* Used for RFC2833 */

pStreamParams->aPacketProtocol[0].PacketType = TBX _MEDIA TYPE AUDIO TELEPHONY_ EVENT;
pStreamParams->aPacketProtocol[0].un8 TxProtocol Type = 101;
pStreamParams->aPacketProtocol[0].un8RxProtocolType = 101;

/* Used for RFC3389 */

pStreamParams->aPacketProtocol[1].PacketType = TBX MEDIA TYPE AUDIO_CN;
pStreamParams->aPacketProtocol[1].un8 TxProtocol Type = 13;
pStreamParams->aPacketProtocol[1].un8RxProtocol Type = 13;

/* Used for main codec */

pStreamParams->aPacketProtocol[2].PacketType = TBX_MEDIA_TYPE _AUDIO_PCMA;
pStreamParams->aPacketProtocol[2].un8TxProtocol Type = 8;
pStreamParams->aPacketProtocol[2].un8RxProtocol Type = 8;

/* Configure VAD */

pTdmParams ->Vad.fEnabled = TBX_TRUE;

pTdmParams ->Vad.SidGenerationScheme= TB640_VP_SID_GENERATION_SCHEME_DEFAULT;
pTdmParams ->Vad.CngGenerationScheme= TB640_VP_CNG_GENERATION_SCHEME_PT13;
pTdmParams ->Vad.NoiseFloor = TB640_VP_VAD_NOISE_FLOOR_LEVEL_MINUS_20_DBM;

/* Activate tone relay */

pTdmParams ->Tone.fDtmfSuppressionEnabled = TBX TRUE;
pTdmParams ->Tone.fDtmfCompleteSuppression= TBX_ TRUE;
pTdmParams ->Tone.fDtmfToneRegeneration= TBX_ TRUE;
pStreamParams ->fEnableRfc2833ToneRelay = TBX TRUE;

/* Use DTMF AAL2 redundancy (RFC2833 only)
pTdmParams ->Tone.fDtmfToneAal2Redundancy = TBX TRUE;

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

2. SIP INVITE containing G.723, telephony events

m=audio 9332 RTP/AVP 4 101 < Using UDP port 9332

a=rtpmap: 4 G723/8000 < G.723 using payload type 4

a=rtpmap: 101 telephone-event/8000 < RFC2833 for telephony using payload type 101
PTB640_VP_GROUP1_STREAM PARAMS pStreamParams;

PTB640 VP_GROUP1_TDM_PARAMS pTdmParams;

pTdmParams = &(pVpGroup->aRes[0].Params.Groupl.Tdm);
pStreamParams = &(pVpGroup->aRes[1].Params.Group1.Stream);

/* Set the default values */
TB640 VP_GROUPI TDM PARAMS DEFAULT (pTdmParams);
TB640 VP_GROUP1_STREAM_ PARAMS DEFAULT (pStreamParams);

/* Choose the codec */

pStreamParams->Codec.MediaType = TBX MEDIA TYPE AUDIO G723 ;
pStreamParams->Codec.G723.fUseHighRateCodec = TBX TRUE;
pStreamParams->Codec.G723.fEnableDcRemoval= TBX_TRUE;
pStreamParams->PacketDurationMs = TBX_STREAM_PACKET DURATION_30MS;

/* Clear the array of payload type values */

for (un32Count=0; un32Count<TB640_VP_GROUP1_MAX_ PAYLOAD_TYPES; un32Count++)

{
pStreamParams->aPacketProtocol[un32Count].PacketType = TBX MEDIA TYPE INVALID;
pStreamParams->aPacketProtocol[un32Count].un8TxProtocol Type = OxFF;
pStreamParams->aPacketProtocol[un32Count].un8RxProtocol Type = 0xFF;

}

/* Used for RFC2833 */

pStreamParams->aPacketProtocol[0].PacketType = TBX MEDIA TYPE AUDIO TELEPHONY EVENT;
pStreamParams->aPacketProtocol[0].un8TxProtocol Type = 101;
pStreamParams->aPacketProtocol[0].un8RxProtocol Type = 101;

/* Used for main codec */
TB640_VP_GROUPI_STREAM_SET PAYLOAD_TYPE (&(pStreamParams->aPacketProtocol[1]), TBX_MEDIA_TYPE_AUDIO_G723_1, 4, 4);

/* Activate tone relay */

pTdmParams ->Tone.fDtmfSuppressionEnabled = TBX TRUE;
pTdmParams ->Tone.fDtmfCompleteSuppression= TBX TRUE;
pTdmParams ->Tone.fDtmfToneRegeneration= TBX_ TRUE;
pStreamParams ->fEnableRfc2833ToneRelay = TBX TRUE;

/* Use DTMF AAL2 redundancy (RFC2833 only)
pTdmParams ->Tone.fDtmfToneAal2Redundancy = TBX TRUE;

Copyright © 2002-2008 by TelcoBridges inc. Page 107

TB640 User's guide CONFIDENTIAL 9000-00002-2H

3.

Page 108

SIP INVITE containing iLBC-13k, telephony events

m=audio 49162 RTP/AVP 97 101 < Using UDP port 49162

a=rtpmap: 97 iLBC/8000 < iLBC (default is 13k) using payload type 97
a=rtpmap: 101 telephone-event/8000 < RFC2833 for telephony using payload type 101
PTB640_VP_GROUP1_STREAM PARAMS pStreamParams;

PTB640 VP_GROUP1_TDM_PARAMS pTdmParams;

pTdmParams = &(pVpGroup->aRes[0].Params.Groupl.Tdm);
pStreamParams = &(pVpGroup->aRes[1].Params.Group1.Stream);

/* Set the default values */
TB640 VP_GROUPI TDM PARAMS DEFAULT (pTdmParams);
TB640 VP_GROUP1_STREAM_ PARAMS DEFAULT (pStreamParams);

/* Choose the codec */

pStreamParams->Codec.MediaType = TBX_MEDIA_TYPE_AUDIO_ILBC;
pStreamParams->Codec.iLBC.SpeedRate = TBX_STREAM_ILBC_RATE_13_KBPS;
pStreamParams->PacketDurationMs = TBX_STREAM_PACKET DURATION_30MS;

/* Clear the array of payload type values */

for (un32Count=0; un32Count<TB640 VP_GROUP1 MAX PAYLOAD TYPES; un32Count++)

{
pStreamParams->aPacketProtocol[un32Count].PacketType = TBX MEDIA TYPE INVALID;
pStreamParams->aPacketProtocol[un32Count].un8TxProtocolType = OxFF;
pStreamParams->aPacketProtocol[un32Count].un8RxProtocol Type = OxFF;

}

/* Used for RFC2833 */

pStreamParams->aPacketProtocol[0].PacketType = TBX MEDIA TYPE AUDIO TELEPHONY_ EVENT;
pStreamParams->aPacketProtocol[0].un8 TxProtocol Type = 101;
pStreamParams->aPacketProtocol[0].un8RxProtocolType = 101;

/* Used for main codec */

pStreamParams->aPacketProtocol[1].PacketType = TBX MEDIA TYPE AUDIO ILBC;
pStreamParams->aPacketProtocol[1].un8 TxProtocolType = 97,
pStreamParams->aPacketProtocol[1].un8RxProtocol Type = 97;

/* Activate tone relay */

pTdmParams ->Tone.fDtmfSuppressionEnabled = TBX TRUE;
pTdmParams ->Tone.fDtmfCompleteSuppression= TBX TRUE;
pTdmParams ->Tone.fDtmfToneRegeneration= TBX TRUE;
pStreamParams ->fEnableRfc2833ToneRelay = TBX TRUE;

/* Use DTMF AAL2 redundancy (RFC2833 only)
pTdmParams ->Tone.fDtmfToneAal2Redundancy = TBX TRUE;

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

4.

pTdmParams = &(pVpGroup->aRes[0].Params.Groupl.Tdm);
pStreamParams = &(pVpGroup->aRes[1].Params.Group1.Stream);

/* Set the default values */
TB640 VP_GROUPI_TDM PARAMS DEFAULT (pTdmParams);
TB640 VP_GROUP1_STREAM_ PARAMS DEFAULT (pStreamParams);

/* Choose the codec */

pStreamParams->Codec.MediaType = TBX_MEDIA_TYPE_AUDIO_ILBC;
pStreamParams->Codec.iLBC.SpeedRate = TBX_STREAM_ILBC_RATE_15_KBPS;
pStreamParams->PacketDurationMs = TBX_STREAM_PACKET_DURATION_20MS;

/* Clear the array of payload type values */

for (un32Count=0; un32Count<TB640_VP_GROUP1_MAX PAYLOAD TYPES; un32Count++)

{

CONFIDENTIAL TB640 User's guide
SIP INVITE containing iLBC-15k
m=audio 3400 RTP/AVP 98 < Using UDP port 3400
a=rtpmap: 98 iLBC/8000 < iLBC using payload type 98
a=fmtp:98 mode=20 < This indicates that it is iLBC-15k rather than 13k
PTB640_VP_GROUP1_STREAM PARAMS pStreamParams;
PTB640_VP_GROUPI _TDM PARAMS pTdmParams;

pStreamParams->aPacketProtocol[un32Count].PacketType = TBX MEDIA TYPE INVALID;

pStreamParams->aPacketProtocol[un32Count].un8TxProtocolType = OxFF;
pStreamParams->aPacketProtocol[un32Count].un8RxProtocol Type = OxFF;

}

/* Used for main codec */

pStreamParams->aPacketProtocol[0].PacketType = TBX MEDIA TYPE AUDIO ILBC;

pStreamParams->aPacketProtocol[0].un8 TxProtocol Type = 98;
pStreamParams->aPacketProtocol[0].un8RxProtocol Type = 98;

Copyright © 2002-2008 by TelcoBridges inc.

Page 109

TB640 User's guide CONFIDENTIAL 9000-00002-2H

5. SIP INVITE containing PCMA, telephony events, VAD and RFC2198 for redundancy
m=audio 20334 RTP/AVP § 101 13 121 < Using UDP port 20334

a=rtpmap: 8 PCMA/8000 < G.711 alaw using payload type 8

a=rtpmap:121 red/8000/1 < RFC2198 for redundancy using payload type 121
a=rtpmap: 101 telephone-event/8000 < RFC2833 for telephony using payload type 101
a=rtpmap: 13 CN/8000 < VAD comfort noise packets using payload type 13
PTB640_VP_GROUP1_STREAM_PARAMS pStreamParams;

PTB640_VP_GROUP1_TDM_PARAMS pTdmParams;

pTdmParams = &(pVpGroup->aRes[0].Params.Groupl.Tdm);
pStreamParams = &(pVpGroup->aRes[1].Params.Group1.Stream);

/* Set the default values */
TB640_VP_GROUP1 TDM PARAMS_DEFAULT (pTdmParams);
TB640_VP_GROUP1_STREAM PARAMS DEFAULT (pStreamParams);

/* Choose the codec */
pStreamParams->Codec.MediaType = TBX_MEDIA_TYPE_AUDIO_PCMA;
pStreamParams->PacketDurationMs = TBX_STREAM_PACKET DURATION_20MS;

/* Clear the array of payload type values */

for (un32Count=0; un32Count<TB640_VP_GROUP1_MAX_ PAYLOAD_TYPES; un32Count++)

{
pStreamParams->aPacketProtocol[un32Count].PacketType = TBX MEDIA TYPE INVALID;
pStreamParams->aPacketProtocol[un32Count].un8TxProtocol Type = OxFF;
pStreamParams->aPacketProtocol[un32Count].un8RxProtocol Type = 0xFF;

}

/* Used for RFC2833 */

pStreamParams->aPacketProtocol[0].PacketType = TBX MEDIA TYPE AUDIO TELEPHONY_ EVENT;
pStreamParams->aPacketProtocol[0].un8 TxProtocol Type = 101;
pStreamParams->aPacketProtocol[0].un8RxProtocol Type = 101;

/* Used for RFC3389 */

pStreamParams->aPacketProtocol[1].PacketType = TBX TBX MEDIA TYPE AUDIO_CN;
pStreamParams->aPacketProtocol[1].un8 TxProtocol Type = 13;
pStreamParams->aPacketProtocol[1].un8RxProtocol Type = 13;

/* Used for main codec */

pStreamParams->aPacketProtocol[2].PacketType = TBX MEDIA TYPE AUDIO PCMA;
pStreamParams->aPacketProtocol[2].un8 TxProtocolType = 8;
pStreamParams->aPacketProtocol[2].un8RxProtocol Type = 8;

/* Used for RFC2198 */

pStreamParams->aPacketProtocol[3].PacketType = TBX _MEDIA TYPE AUDIO RED;
pStreamParams->aPacketProtocol[3].un8TxProtocol Type = 121;
pStreamParams->aPacketProtocol[3].un8RxProtocolType = 121;

/* Configure VAD */

pTdmParams ->Vad.fEnabled = TBX_TRUE;

pTdmParams ->Vad.SidGenerationScheme= TB640_VP_SID_GENERATION_SCHEME_DEFAULT;
pTdmParams ->Vad.CngGenerationScheme= TB640_VP_CNG_GENERATION_SCHEME_PT13;
pTdmParams ->Vad.NoiseFloor = TB640_VP_VAD_NOISE_FLOOR_LEVEL_MINUS_20_DBM;

/* Activate tone relay */

pTdmParams ->Tone.fDtmfSuppressionEnabled = TBX TRUE;
pTdmParams ->Tone.fDtmfCompleteSuppression= TBX TRUE;
pTdmParams ->Tone.fDtmfToneRegeneration= TBX_ TRUE;
pStreamParams ->fEnableRfc2833ToneRelay = TBX_TRUE;

/* Use RFC2198 encapsulating RFC2833 for DTMF tone relay */
pTdmParams ->Tone.fDtmfToneAal2Redundancy = TBX FALSE;

Page 110 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

6.2.2.5.7 Jitter buffers

In a Volp network, packets may be delayed or re-routed due to numerous conditions usually out-of-the-control of any
Volp endpoint or equipment. A failure in an Ethernet switch or route somewhere may also cause packet loss, out-of-
order packet receiving or receiving bursts. Therefore, the Volp device cannot assume that all RTP packets will be
delivered just-in-time to be played onto the TDM bus. It needs to store the received packets into a queue, re-order
them and schedule them accordingly to be played at regular interval onto the TDM bus. When too many packets to fit
into the jitter-buffer are received, the surplus packets will be dropped by the Volp device. If not enough packets are
received, the jitter-buffer will play the packets stored into its queue until it is empty. At that point, silence will be
played on the TDM interface.

Although a jitter-buffer is necessary to protect against network impairments, it also injects delay into the receiving path
(i.e. the jitter-buffer need to hold the packets a little while before playing them). Thus, larger jitter-buffers will
accommodate more unreliable networks (in terms of packet latency) but will also introduce a larger delay in the voice
stream and then reduce the conversation quality. Therefore, an application will want the jitter-buffer to be large
enough for the network but the smaller possible to minimize delay.

To achieve this goal, the jitter-buffers included in voice processing groupl allow two different configuration mode:
fixed and adaptative. A fixed-mode jitter buffer will always have a constant delay according to its depth (e.g.. 20
msec). This will ensure that the latency in the voice stream will never change. On the other hand, if the network jitter
never goes over 10msec, the jitter buffer will still hold every packet for the time duration configured by the user (e.g.
20 msec)

The adaptative jitter-buffer is designed to adjust to the smallest buffer length to accommodate the network while
allowing the buffer to grow to a certain limit. To do so, the application needs to configure an initial delay period
(msec), minimum delay period (msec), a maximum delay period (msec), an adaptation period (sec), a deletion
threshold (msec) and a deletion method.

The initial delay period is a delay that the Volp device will wait when the very first RTP packet is received. It allows
the jitter buffer to fill (usually up to the middle) before starting the playback. This is to avoid hearing gaps when
opening a new connection and that the second RTP packet is delayed by the network. The minimum and maximum
delay period are the range (or depth) of the jitter buffer. The adaptation period is the time that the Volp device will
take to adapt toward lower jitter buffer length if it detects that the network jitter is smaller. The deletion method is to
select if the exceeding packets are to be dropped immediately when the maximum buffer length is reached (hard
deletion method) or if the devices tries to do deletion on packets that may have less impact on the voice stream (smooth
method). The ‘hard’ method will ensure the delay never exceeds the maximum jitter-buffer length but may create
gaps in voice when a packet is dropped. The ‘smooth’ method has less chance of creating voice gaps but the jitter-
length (thus the latency) may exceed the maximum configured value. The deletion threshold is the absolute
maximum jitter depth after which packets are deleted regardless of the deletion method.

& When transmitting modem or fax data through a clear-channel or a G.711 codec, it is important to
configure the channel with fixed jitter-buffer. Modem and fax signals are greatly disturbed by
variation in the voice stream. Clear-channel modem/fax transmission should be used only when
T.38 protocol is not available since the later is designed to counter the effect of latency and variable
jitters of Volp network.

6.2.2.5.8 VAD

Voice activity detection (VAD) is primarily used by the packetization engine to try saving bandwidth on the network.
When silence period is detected on the TDM side of a Volp connection, the packetization engine will encode a special
message (SID) telling the remote-end about the silence period and characteristic to generate comfort noise instead of
encoding the silence into a regular RTP packet. As this feature affect the voice integrity (compared to the TDM
stream), it is not recommended to activate it for data transfer (modem or fax).

Copyright © 2002-2008 by TelcoBridges inc. Page 111

TB640 User's guide CONFIDENTIAL 9000-00002-2H

6.2.2.5.9 T.38 Fax relay

Although fax data could be transferred over a non-codec (i.e. clear channel) RTP stream without loss of integrity on
local networks, there are still parameters that can affect efficient T.30 transfer over a packet network (i.e. latency may
affect carrier-frequency negotiation). T.38 allows a fax transmission over a network where it is not possible to
guarantee low latency (i.e. when the communication goes over a satellite link). For this reason, it is always
recommended to use T.38 instead of clear-channel communication when it is available. T.38 encapsulation allows the
transfer of such fax information over a packet network without loss of integrity. In order to transfer the fax, a T.38 fax
relay voice processing group first needs to terminate the fax call on the TDM side (i.e. demodulate from V.21 or other
speed grade modulation standard). Then it encapsulates fax data into T.38 frames and sends them onto the packet
network following RFC2833. The receiving end will retrieve those RFC2833 packets and modulate the data back onto
its TDM interface thus relaying the fax.

& The TB640 cannot store nor generate fax data to/from the host. The fax data is taken from the TDM
side and converted into RFC2833 on the IP network. There is no interaction with the host application
other than to notify statistical and state change information. The TB640 does T.38 “fax relay”, not
“fax termination”.

& “Fax termination” is accomplished using the FaxServer product integrated with the TBStreamServer.
This product is opened-sourced available from TelcoBridges.

Fax and modem calls are traditional equipment that are here to stay and that shouldn’t be ignored. With gateway
applications, especially when using Volp, fax transmission need to be dealt with using the proper transmission protocol
(i.e. T.38) in order to carry the fax information efficiently across networks. Since there is nothing different between a
typical voice and a fax call during its setup phase, the fax transmission need to be detected live by analyzing the
content and detecting tone typical to fax and modems. Once the data transmission is detected, both sides of the call
must switch from currently used codec either to T.38 protocol or to a clear-channel mode (no codec, fixed jitter-buffer,
low latency, no echo depending on the fax negotiated speed). The tricky part is that both sides needs to do this
transition on their own as there is no ‘standard’ in-band protocol telling them to do so. Larger companies such as Cisco
inserted their own proprietary protocol embedded between RTP frames so that two Cisco boxes would agree on the
new parameters to choose to carry the fax.

Another way to deal with this issue is to be flexible in switching from one codec to the other quickly. For example,
once a fax transmission is detected, an application could immediately change the current codec to use clear-channel
instead (lowering the packet duration, fixing the jitter-buffers, disabling the echo, etc). Once in that mode, clear-
channel RTP packets will be generated toward the other end. The Volp unit will then alert the host application once it
detects that the received payload type has changed (from the ‘old’ codec type to a new one). Thus, the application will
know if the remote side has switched to a clear-channel codec or to an RFC2833 channel by looking at received
packets. It can then re-adjust (if necessary) by switching to the same codec type and continue the fax transmission.

& A TB640 VpGrpl Fax resource can only be used to process one fax transmission. Once the
transmission is done, the resource needs to be de-allocated. This is due to the Fax state machine
handling in the physical voip devices. Thus, an application cannot pre-allocate T.38 VpGrpl
resource as it does for voice-related resources.

6.2.2.5.10 RTCP

The RTCP protocol is an optional protocol that ‘controls’ a single RTP session. Following RFC3550, this protocol
gathers statistical and provisioning information about a specific RTP session. Although it is not mandatory for both
sides of a Volp stream to support RTCP in order to access this statistical information, it is recommended since it will
allow the protocol to calculate useful debugging statistics such as the round-trip delay between both Volp endpoints.
The application can decide to activate RTCP on a per-channel basis. The only restriction (enforce by RFC3550) is that
an RTP stream controlled by an RTCP stream needs be have an even UDP port number (assuming n)while the RTCP
stream will use the next odd UDP port (n+1). Therefore, if the RTCP option is activated, the blade will refuse to open
a stream resource on a odd UDP port number.

Page 112 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

& An RTP stream must always be allocated with an even UDP port number if RTCP is to be used. The
blade will then use the following port number (odd) for the RTCP control protocol monitoring that
stream.

Aside from statistical information, RTCP also adds new information to be exchanged with the remote Volp endpoint.
A textual name for the Volp stream will be sent over the RTCP control path within a SDES-CNAME RTCP packet
section. This name is used to identify the session in a human-readable fashion. Another RTCP packet named ‘BYE’
indicates the termination of the RTP session. Yet another RTCP packet named ‘APP’ can be used to exchange user-
to-user information between the two Volp endpoints. If activated, all of those RTCP packet types may generate
notifications toward the host application when they are received. The reader should refer to RFC3550 for further
details of RTCP information.

6.2.2.6 VP groupl Applications

6.2.2.6.1 Tdm to Volp connections

Numerous types of application exist that make use of both TDM and Volp connections. For example, in a typical
signaling gateway application, calls are terminated on either one interface (PSTN for TDM calls and Volp for packet
network) and bridge them to the other. In those cases, multiple types of signaling stacks may be used such as ISDN,
CAS or SS7 on the PSTN side and SIP or H.323 on the Volp side. For the codec usage, it really depends on what type
of packet network(s) the application connects to. Wireless networks may require the gateway to support CDMA
codecs (EVRC, QCELPS8/13, SMV) or AMR while a packet cable network might require G.711 and G.728. Of course,
other Volp features are always required to adapt to the different network conditions (i.e. echo cancellations, jitter
buffers, RTCP control protocol, T.38 fax relay, etc).

Other applications such as prepaid or postpaid systems may require connecting to different types of networks, also
involving different codecs. These systems usually offer a ‘least cost routing’ feature which changes the routing of
each call according a dial plan and/or different network providers’ fees during different time of the day. Routing calls
through a Volp carrier might become cost effective during certain peak period of the day compared to traditional PSTN
routing. Furthermore, since other IVR (interactive voice response) services are also required (conferencing, prompt
playback, tone generation and detections, etc), the TB640 product is well suited for any of these situation as it supports
all the required subsystems, as well as signaling stacks, on the same blade, running concurrently.

6.2.2.6.2 Volp to Volp transcoding

One of the simplest applications in Volp is to do codec transcoding without dropping to the PSTN (TDM) interface.
Wireless telephony, due to a limited bandwidth availability (compared to fixed land lines) has no choice but to use
compression codecs such as AMR or EVRC. Therefore, when a call needs to be switched to the PSTN, existing
mobile switches need to convert the voice stream back to G.711 before routing the calls outside their network. They
usually depend on external media gateways to do the processing-intensive conversion.

6.2.2.6.3 Fax relay over Volp network (RFC2833)

As mentioned before, fax and modem equipment cannot be ignored in a network because of their widely deployment.
Almost every Voip system will need to support fax transport either using clear-channel mode or using T.38. The
application range goes from standard gateways to fax/modem relay farms. In any cases, supporting fax relay is a must.

6.2.2.6.4 TDM Echo cancellation

As mentioned in section 6.2.2.5.2, echo cancellation may be required when interfacing with network-edge TDM
equipment or when routing calls to a packet network. It may also be used in applications where Volp is not involved to
resolve an audible echo issue. Using the pure-TDM voice processing resources, the TB640 Volp subsystem can create
unidirectional or bidirectional echo cancellation resources that can be used in conjunction with other part of the system
(e.g. conference, trunking, etc.). Creating high-density echo canceller system (i.e. 15k connections) is therefore
possible by combining multiple blades together.

Copyright © 2002-2008 by TelcoBridges inc. Page 113

TB640 User's guide CONFIDENTIAL 9000-00002-2H

7 CONNECTIONS

Connections on the TelcoBridges family of adapters are possible between any type of resources (channel and
processing resources). There is virtually no limitation on which resource can be linked together. The application must
previously allocate and/or define resources which need to be connected. A connection needs at least to include a
channel resource to get outside of the adapter but can include as many resources as required. The connection manager
will automatically allocate resources that have been defined by the application. The connection manager will also
automatically de-allocate resources that have been defined by the application. The connection manager programs the
connection engine on the adapter following a list of paths describing the connection. A path description can be seen as
a finite list of resources that must be linked together.

Every path between all resources must be specifically described. A path is composed of two resources plus a flag
indicating whether the two resources must be connected in full-duplex or half-duplex. The first resource listed in a path
description is the source and the second is the destination. When a resource is flow through, two path descriptions are
required to connect each side of the resource. The first connection listed is always connected to the input logical side of
the resource while the second one connects to the other side.

A Higher level view of the connections on the system is show in Figure 57.

Streams

g

Voice Processing:
Transcoding Tones, Play, Record,
(Alaw/ulaw) Conferencing

Trunks CTBUS Multi-blade

Switching

Figure 57: TB640 high-level view of connections
7.1 Path description
Here are three different cases illustrating how to describe a single connection with a path description list:

e (Casel

The following connection could be described with two different path description lists.

Resource A |:> Resource B
Full-Duplex Full-Duplex
Non flow through <:| Non flow through

Figure 58: Path description to connect two full-duplex resources

Page 114 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

The connection between resources A and B could be described with the following path description list:
1. Link resource A to B, full-duplex
The connection between resources A and B could also be described with the following path description list:

1. Link resource A to B, half-duplex
2. Link resource B to A, half-duplex

Path descriptions are both equivalent.
e Case2

The following connection could be described with four different path description lists.

Resource C |:> Resource D |:> Resource E
Full-Duplex Full duplex Full-Duplex
Non flow through <:| Flow through <:| Non flow through

Figure 59: Path description to connect three full duplex resources

The connection between resources C, D and E could be described with the following path description list:

1. Link resource C to D, full-duplex
2. Link resource D to E, full-duplex

The connection between resources C, D and E could also be described with the following path description list:
1. Link resource C to D, half-duplex

2. Link resource D to E, half-duplex

3. Link resource E to D, half-duplex

4. Link resource D to C, half-duplex

The connection between resources C, D and E could also be described with the following path description list:
1. Link resource C to D, full-duplex

2. Link resource D to E, half-duplex

3. Link resource E to D, half-duplex

The connection between resources C, D and E could also be described with the following path description list:
1. Link resource C to D, half-duplex

2. Link resource D to E, full-duplex

3. Link resource D to C, half-duplex

They are all equivalent.

o (Case3

It is possible to connection the following asymmetric resources with a single path description list.

Copyright © 2002-2008 by TelcoBridges inc. Page 115

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Resource F Resource G Resource H
Full-Duplex |:> Half duplex |:> Full-Duplex
Non flow Flow through Non flow
through through
< |

Figure 60: Path description to connect asymmetric resources

The connection between resources F, G and H could be described with the following path description list:
1. Link resource F to G, half-duplex

2. Link resource G to H, half-duplex

3. Link resource H to F, half-duplex

e Case4

It is possible to connect the following resources with a single path description list.

Resource [Resource J
Half-Duplex |:> Half-Duplex
Non flow through Non flow through

Resource K
|:‘> Half-Duplex
Non flow through

Figure 61: Path description to connect resources (single source to multiple destinations)

The connection between resources I, J and K could be described with the following path description list:

1. Link resource I to J, half-duplex
2. Link resource I to K, half-duplex

e C(Case5s

It is NOT possible to connect the following resources.

Page 116 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

Resource L Resource N
Half-Duplex |::> Half-Duplex
Non flow through Non flow through

Resource M
Half-Duplex |:‘>
Non flow through

Figure 62: Path description to connect resources (multiple sources to single destination)

7.2 Code example #6: Connect two full-duplex resources using the
implicit filter

Here is a code example showing how to connect two full-duplex resources using the implicit filter to retrieve response
message in synchronous like behavior:

TBX RESULT API APIResult;
TB640 RESULT ConnectResult;
TBX_MSG HANDLE hMsg;

TBX FILTER HANDLE hFilter;

TBX CONNECTION HANDLE hConn;

TB640 REQ CONN RES CREATE * pPRequestCreate;
TB640 RSP _CONN RES CREATE * pPResponseCreate;

/* Initialize local variables */
hFilter = 0;

/* in hLib is the library handle returned by TBXOpenLib call

in hAdapter is an adapter handle returned by TBXGetAdaptersList call
in hResSrc is the resource handle of the source

in hResDst is the resource handle of the destination

out_hConn is the connection handle returned by this code */

/* Get message buffer */

APIResult = TBXGetMsg (
in hLib,
sizeof (TB640 MSG CONN RES CREATE) + sizeof(TB640 PATH DESCRIPTION),
&hMsg) ;

if (TBX RESULT SUCCESS(APIResult))
{
/* Initialize message header */
TBX_FORMAT MSG_HEADER (
hMsg,
TB640 MSG_ID CONN RES CREATE,

Copyright © 2002-2008 by TelcoBridges inc. Page 117

TB640 User's guide CONFIDENTIAL 9000-00002-2H

TBX_MSG_TYPE REQUEST,

sizeof (TB640 MSG CONN CREATE)
in hAdapter,

0,

0);

/* Set the message payload */
PRequestCreate = (PTB640 REQ CONN CREATE)

TBX MSG_PAYLOAD POINTER(hMsg);
pRequestCreate->un32MsgVersion = 1;
pRequestCreate->un32PathDescCount = 1;
pPRequestCreate->aPathDesc[0] .fFullDuplex = TRUE;
PRequestCreate->aPathDesc[0] .hResSrc = in hResSrc;
pPRequestCreate->aPathDesc[0] .hResDst = in hResDst;

/* Send the allocation message to single adapter. Note that the last
argument is non NULL. This call will return a handle on an implicit
filter. This filter can be used to retrieve the response to this request.

*/
APIResult = TBXSendMsg (
in hLib,
in hAdapter,
&hMsg,
&hFilter);

}

/* Insert code here for the operations to be done in parallel */
/* Multi-threading is recommended to obtain best performance and take full
advantage of the asynchronous capabilities */

if (TBX RESULT SUCCESS(APIResult))
{
/* Use implicit filter returned by TBXSendMsg call to retrieve response
message. Call blocks for maximum 5 second. */
APIResult = TBXReceiveMsg (
in hLib,
hFilter,
5000,
&hMsg) ;
}

if (TBX RESULT SUCCESS(APIResult))
{
/* Retrieve the message payload */
pPResponseCreate = (PTB640 RSP _CONN CREATE)
TBX_MSG_PAYLOAD POINTER(hMsg);
CreateResult = pResponseCreate->Result;
out hConn = pResponseCreate->hConn;

if (TBX RESULT SUCCESS(CreateResult))
{

printf (“SUCCESS: Connection of full-duplex resources\n”);
}

else

{
printf (“FAILURE: Connection of full-duplex resources\n”);

Page 118 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL

}

/* Release message buffer */
APIResult = TBXReleaseMsg (

in hLib,
hMsg) ;

}

if (hFilter != 0)

{

/* Destroy the implicit message filter */
TBXDestroyMsgFilter (in hLib, hFilter);

Copyright © 2002-2008 by TelcoBridges inc.

TB640 User's guide

Page 119

TB640 User's guide CONFIDENTIAL 9000-00002-2H

8 SIGNALING

The signaling information/code contained in this document/product are based on
the best information we have available. Although it has been tested successfully
with other piece of signaling equipment, we cannot guarantee that it will conform to
the usage of any particular switch in the field.

8.1 Overview

8.1.1 Architecture

One of the primary functions of the TelcoBridges family of adapters is to provide signaling capabilities to interconnect
with the PSTN or other types of systems. In the signaling world, there are many variants of protocols (even
standardized ones) depending on the type of equipment the adapter is connected to. TelcoBridges supports many
variants of the ISDN Q.931 as well as multiple variants of channel associated signaling such as CAS R1 and R2.

TB640

Message/API conversion with host(s)

Isdn (Q.931)
stack

Tones

HDLC

CAS bits frames
& T/ETIA T1E1 g T1E1IA
Framer Framer Framer
o] || 3
N4

Figure 63: ISDN Signaling stack instances

At this point, nothing is really different from what a customer can find with most telecommunications equipment
vendors. The major difference with TelcoBridges family of products is that the signaling stacks and protocols can be
individually selected, configured and controlled on any of the trunks available on the adapter while the system is up
and running. Resource allocation (such as DSPs for tone detection and generation) is done automatically when
selecting the signaling protocol and CAS method desired for a particular trunk (as shown on Figure 63). This
enables the user to bridge between different types of switches using the same adapter and equipment. Some
configurations require a single stack instance to control multiple trunks (such as the ISDN NFAS mode). In this case,
the multiple trunks are assigned under the control of that single stack instance and resources are assigned accordingly.

Page 120 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

This “isolated-stack™ architecture also allows a stack instance to be check-pointed (saving its states regularly) to
another instance therefore preventing active call-loss if there is a software failure. Being protected from one-another,
the stacks are isolated from the physical devices they control thus reducing the risks of corruption of active voice calls.

The API messages exchanged between the adapter and the host(s) are almost a direct mapping between the Q.931
primitives from the signaling stack and the API messages. This type of methodology is preferred even if it does add a
little complexity to the user application because it also gives a tremendous control over the protocol information
elements and parameters.

8.1.2 CCS

The common channel signaling associated with every trunk primarily uses Q.921 LAPD frames sent and received over
a designated D-channel. All the configuration parameters are specific to every trunk making it possible for the user to
individually configure the trunks as he sees fit for his application. Every signaling stack instance have its own
parameters including the network termination mode (user versus network), the type of associated signaling, the
switching equipment type (e.g. DMS-100, 4ESS, SESS, etc.) and other information related to the protocol (e.g. ISDN
numbers, information elements, etc).

Multiple types of channel associated signaling can be chosen depending on the selected trunk and configuration
options. T1 robbed-bit and E1 CAS signaling information is retrieved from the multi-frame by the framers while R1
tones are processed by DSPs and then forwarded to the signaling stack. Once the information is processed, an
appropriate message is sent to the host(s) containing the high-level information gathered. The host(s) won’t receive, for
example, the raw ABCD bits from the framers to process them (only for information in cases where they are required).
This eliminates a huge exchange flow of messages between the adapters and the host libraries.

Another type of channel associated signaling is the MFC-R2 which uses multi-frequency tones to carry in-band
information during connection setup. This type of information is also retrieved/inserted into the data streams by the
DSPs under the control of the signaling stack. Again, this allows a greater number of trunks to be processed since there
is no need for a huge traffic exchange with the host.

8.1.3 QsSIG

Q.SIG is an extended version of the ITU-ISDN reference module to allow interconnection between PINX [Private
Integrated services Network Exchange] without any references to a “user” or “network” side (the protocol is
symmetrical). This extension creates two new endpoints in the network called “Q” and “C” where “Q” is the logical
signaling endpoints within the private network and “C” is the physical connection endpoint to the PINXs. The layer 2 is
still using LAPD but replace Q.931 layer 3 protocol by its own. This reflects to the host application by other types of
messages for Q.SIG signaling. This mode of operation is, again, selectable per trunk independently of others.

Copyright © 2002-2008 by TelcoBridges inc. Page 121

TB640 User's guide CONFIDENTIAL

TE

TE TE

SIT

Public ISDN
B

SIT

Public ISDN
A

90
® O
(¢}
O
® O

Figure 64: Network with Q.SIG endpoints

8.2 Q.931ISDN Signaling

8.21

Trunk configuration

9000-00002-2H

Before a signaling stack can be started, the underlying trunk must be configured correctly. The configuration depends
on the Q.931 switch variant that will be used in the system. When multiple trunks are attached to the same stack
instances, all trunks must have the same configuration.

Table 12: Q.931 ISDN variants

Page 122

Switch variant (and supported deltas) Trunk type expected
TB640 ISDN VARIANT 4ESS T1/11
TB640 ISDN_VARIANT AUS PRI

75-014 T1/11
75-038
TB640 ISDN VARIANT 5ESS PRI T1/]1
TB640 ISDN_ VARIANT NET5
French delta
German delta
UK delta El
China delta
Korea delta
Singapore delta
TB640 ISDN _VARIANT DMS PRI
Nortel DMS-100 T1/11
Nortel DMS-250
TB640 ISDN VARIANT US NI2 PRI T1/]1
TB640 ISDN VARIANT HONG KONG PRI T1/J1
TB640 ISDN VARIANT JAPAN INS T1/]1

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

8.2.2 D-Channel logical status

The signaling stack is decoupled of the transport mechanism (which is a variant of HDLC over the trunks) but is still
affected by the trunk state. When the physical line is up and the D-channel goes up, the application will receive two

TB640 _MSG ID ISDN NOTIF STATUS INDICATION events, one with the value

TB640 ISDN STATUS IND VALUE PHYSICAL LINE ACTIVATED and one with the value

TB640 ISDN STATUS IND VALUE LINE READY. When a trunk line goes down, the stack is no longer able to
communicate with its peer if its communication channel (also called the D-Channel) was located on that trunk. There
are two different levels of error that can occur. The first error level is tied to the physical layer and is affected by the
regular alarms of the trunks (Loss-of-signal, Remote-alarm-indication, etc). When such an event occurs, the stack
sends an event to the user-application (7B640_MSG ID ISDN _NOTIF STATUS INDICATION) containing the value
TB640 _ISDN STATUS IND VALUE PHYSICAL LINE DEACTIVATED. The second level of error concerns the D-
Channel state. The D-Channel state represents the state (up or down) of the logical communication link between the
stack and its peer. When this link is lost, the stack sends an event to the user-application
(TB640_MSG ID ISDN NOTIF STATUS INDICATION) containing the value

TB640 ISDN STATUS IND VALUE LINE NOT READY. Note that a user-application can always read this state
using the TB640 _MSG ID ISDN STATES GET API message. No connection openings can occur when the D-
Channel is down (all attempts will be refused). Pending connections may time-out and be closed by the stack while
active calls may stay opened until manually disconnected by the user-application. This behavior is variant-specific.
The user application should be careful when closing active calls when the D-Channel is down because it does not mean
the peer stack will do it as well. Thus, when the logical link will be up again, the two stacks will not have the same
knowledge of which timeslot is free and which one is used. To make sure the user-application knows the exact state of
the D-channel at all time, it should first create an event filter to capture ISDN notifications coming from the stack and
then use 7B640 _MSG ID ISDN STATES GET to retrieve the current state. Following that sequence will guarantee
the application will have an exact knowledge of the D-Channel state (and never miss the event).

8.2.3 Bring up sequence

Depending on the chosen switch variant, the LAP-D communication between the two peer stacks is either initiated by
the user-side, network-side or both. In some switch variants, a D-Channel timeout may occur if one of the two protocol
stacks is not “ready” (or the trunk line is down). Some variants do not restart the LAP-D communication
establishment until certain events occur (i.e. the user tries to open a connection). If the user-application is not careful
in monitoring the D-Channel status (discussed in section 8.2.2), the very first call might be lost because the LAP-D
communication wasn’t yet established. Thus, the application should respect a sequence before trying to open the very
first user call. First, after the physical line is up, the application should monitor the D-Channel status to see if the
logical link is up. When the D-channel logical link is down, the application should send a

TB640 MSG ID ISDN CMD WAKEUP REQUEST API message on the trunk to “kick-start” for some switch
variant. The application will then receive another event about the D-Channel status (either up or down). The user
application should continue executing the wake up command until it sees the event indicating the D-Channel is now up
(or declare a fatal error because the peer switch wasn’t able to answer after a certain delay). Once the channel is up, the
user-application can establish ISDN calls.

This wakeup sequence is only necessary on certain switch variants and protocol side summarized in Table 13. Ina
telecom network, it is assumed that the network-side (e.g. a DMS-100) is always up before the user-side. But, in
smaller networks, it would be possible to have the user-side up first. In those cases, the application controlling the
stack should follow the bring up sequence to ‘discover’ the remote side.

Copyright © 2002-2008 by TelcoBridges inc. Page 123

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Table 13 - Bring up sequence behavior

Switch variants | Network-side responsibility | User-side responsibility Behavior
to discover the remote to discover the remote

4ESS No Yes Retries indefinitely until up

AUS No Yes (*) Tries only once after the physical
line is brought up.

SESS No Yes Retries indefinitely until up

NETS No Yes (*) Tries only once after the physical
line is brought up.

DMS No Yes Retries indefinitely until up

US NI2 No Yes Retries indefinitely until up

HONG KONG No Yes (*) Tries only once after the physical
line is brought up.

JAPAN INS No Yes Retries indefinitely until up

Important note:
The user application should send one wakeup request only for variants/protocol side marked with a (*) in
Table 13. Also, the wake up request must be sent only while in the following state:
TB640 ISDN _STATUS IND VALUE PHYSICAL LINE ACTIVATED has been received AND
TB640 ISDN STATUS IND VALUE LINE NOT READY has been received.
Failure to follow this sequence will result in the application thinking it has sent the wakeup request but will
never see the effect (i.e. wakeup has no effect when the physical line is not activated — the stack will never
send another TB640 ISDN STATUS IND VALUE LINE NOT READY event).

8.2.4 Call handle and user contexts

Dealing with a signaling protocol stack equals dealing with many asynchronous events related to different contexts. In
a typical application, the concept of a “call” represents all the different information and states for a particular
communication between two endpoints in a specific system. An application dealing with this “call” usually wants to
retain information about the two peers (names, numbers, resources handles to which the call is connected to, billing
information, etc.) during the lifetime of the call. This information is kept by the user-application and needs to be
referenced each time the call state changes. From the perspective of a protocol stack, a call “lives” from the first
request (or notification) to establish the call until the call is terminated by one of the two peers. During the life of the
call, it creates a unique handle (a call handle) to identify this call and internal states. The end-user application can then
make the correlation between its own call context information (kept in its memory) and this unique identifier. When
receiving a call, the hCall is present in the notification message

(TB640_EVT ISDN NOTIF CALL PRESENT INDICATION). When generating a new call

(TB640_REQ ISDN _CMD_CONNECT REQUEST), the response
(TB640_RSP_ISDN_CMD_CONNECT REQUEST) will have the hCall.

The easiest (and recommended) way to make this correlation in the user application is to use an hash-table or
something similar (depending on the number of calls the application is designed to process). Since every call made
from or to the stack is identified by a unique hCall (call handle) allocated by the TB640, the user application can create
an hash-table (or do a linear research when the number of calls is not high enough) to match an hCall to call context
information (typically referenced by a pointer or a database index). Using this method will ensure the user application
never to loose a call context since it can always go back into its hash-table and list the currently opened call(s).

[The section talking about the “user call context” has been removed — the suggested way to reference the call is to

always use the hCall (call handle) provided by the TB640 ISDN stack. See the isdn sample program state machine for
details on how to handle this (isdnstates.pdf)].

Page 124 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

8.2.5 APl request/response vs ISDN messages

One source of confusion when first developing with the TB640 ISDN API is the difference between the
request/response messaging system and the ISDN Q.931 messages. In TB640 terminology, a “request” is a message
that is sent from the user application to the blade and will always be answered by a “response” message (see section
2.1). It means that when a user application sends a Q.931 API message to the blade, it will always be answered by a
response containing a result code (usually OK or an error code). This result code refers to the delivery of the Q.931
message to the protocol stack and does not imply the success or failure of the actual Q.931 requested operation (e.g.
SETUP message being delivered to the peer). A Q.931 protocol stack involves timers and state machines that reflect
the progress of a call and cannot always return answers to a request right away. Therefore, the user application needs
to send multiple Q.931 requests (that will each be answered by a “response”) to establish a call. Many Q.931 API
message sequences used during a call establishment are presented in section 8.2.10 but those don’t show the responses
sent by the board to acknowledge every requests. Therefore, the Q.931 ISDN state changes from the stack will be
delivered to the user application through a series of notifications (events) containing new call states.

8.2.6 Restart Procedure

RESTART is an optional Q.931 primitive (depending on the switch variant) that is used to restore a B-channel into the
idle state in case of mismatch between the host application, the on-board ISDN stack and the peer ISDN stack.
According to the specifications, the RESTART primitive can only be sent when the call is in the ‘idle’ or in the
‘talking’ state. Through a mechanism of acknowledgement, a stack (and host) knows if the peer ISDN stack has
accepted/processed the RESTART request.

Using the TB640 MSG _ISDN_CMD RESTART CHANNEL REQUEST (i.e. RESTART) message on a channel
(trunk resource handle) or a trunk (trunk handle) will have the following effects:

- The specified channel or all the channels in the trunk on the local side will be put to idle if the RESTART
operation succeeds

- There will be an Q.931RESTART primitive sent to the remote stack

- The application will receive a TB640_ MSG_ISDN_NOTIF_STATUS_INDICATION event with a Status
Indication of TB640_ISDN_STATUS IND VALUE RESTART ACK (i.e. RESTART ACK). The value
can be TBX TRUE if it succeeded or TBX FALSE if it fails.

- The ISDN stack has an internal timeout (named T316) which is set at 120 seconds (per specifications). Upon
the first expiry of this timeout, the stack will automatically send another RESTART request to the peer stack
and restart the T316 timer. If this second timer expires, the RESTART procedure is considered as ‘failed’
and the B-channel will be put in ‘maintenance’ mode (no longer accepting calls). This behavior is common to
all switch variants and sides (network and user).

The restart procedure is symmetrical and behaves the same from the network-side or user-side. All switch variants
supports the RESTART primitive although most of them won’t do anything with it. Only switch variants DMS-100
and NI2 make active use of RESTART primitives (this is done automatically). 4ESS and SESS have similar
functionalities but implemented with SERVICE primitive instead (also done automatically). No specific action is
required by the host application when an ISDN stack is brought up but it can make use of the RESTART primitive to
recover from state mismatch as mentioned before. It is possible that some ISDN equipment don’t implement correctly
the requirements of the RESTART primitive. Thus, it is possible for the application to send a RESTART primitive
and to get a RESTART ACK(failed) answer. In those cases, the B-channel becomes locally unavailable (‘maintenance
mode’) but can be recovered with the TB640 MSG ID ISDN CMD RESET CHANNEL REQUEST request. This
request will put back the local B-channel to the idle state.

8.2.7 B-Channel status

B-channels (also called bearer channels or simply ‘voice timeslots’) are the timeslots carrying data or voice when an
ISDN call is active. Usually, a B-channel is always considered ‘in-service’ meaning it is available for a new call or is
currently transporting a call. Note that the stack will refuse any incoming or outgoing calls on a B-channel that is not
‘in-service’.

Copyright © 2002-2008 by TelcoBridges inc. Page 125

TB640 User's guide CONFIDENTIAL 9000-00002-2H

In some situations, a B-channel can be switched (manually or automatically) to another state where calls are no longer
allowed: out-of-service or maintenance. When a B-channel is in the state ‘out-of-service’, it usually means that it is
not used at all by the ISDN stack. Cases where timeslots of a trunk are shared between the ISDN stack and some other
applications would put the non-ISDN timeslot as ‘out-of-service’. B-Channels that are in maintenance means they
currently cannot carry voice/data traffic as they are “‘under-test’ by some external means (e.g. a bit-error tester).

Automatic state change can occur when a RESTART Q.931 primitive sent to the remote stack is not answered within a
timeout period. Upon timeout expiry, the B-channel is set to maintenance mode automatically thus preventing other
calls to be made until the B-channel is ‘repaired’. The B-channel can be restored to the ‘in-service’ state by issuing a
successful TB640 MSG _ID ISDN_CMD_RESTART CHANNEL REQUEST command message. If, for some
reasons, the remote stack always refuses the RESTART Q.931 primitive, the last resort is to use the

TB640 MSG ID ISDN CMD RESET CHANNEL REQUEST command message which will reset the local state of
the stack (ignoring the states of the remote stack). B-channel state modification commands are also available to return
to an ‘in-service’ state but are not available for all stack variants as mentioned below.

The states of each B-channel can be queried at any time using the command message

TB640 MSG ID ISDN STATES BCHANNEL GET. Notifications are also sent to the host application when a B-
channel changes from one state to the other (TB640_MSG _ID ISDN NOTIF_STATUS INDICATION with value
TB640 ISDN _STATUS IND VALUE BCHANNEL STATE CHANGE). This allows an application to monitor
which timeslot can be use to make calls or receive calls. This command is available for all stack variants.

On the other hand, only four stacks variants (DMS, SESS, 4ESS and NI12) allows the host application to change the B-
channel state through a command message (TB640_ MSG _ID ISDN STATES BCHANNEL SET). The main reason
is that only those four variants have implemented a primitive (not part of Q.931 standard) that allow a stack to inform
its peer stack that a B-channel is about to change state.

Upon stack bring-up sequence, the user-application will receive a series of B-channel state change events. If the bring-
up sequence worked correctly, every B-channel (timeslot) should have its state set to ‘in-service’. Note that the B-
channel states (in-service, maintenance or out-of-service) is not related to the D-channel state (up or down). Even if
the logical D-channel is down, all B-channels can still be ‘in-service’ meaning that the stacks will be able to issue calls
once the D-channel is brought up.

8.2.8 Asynchronous issues

The ISDN stacks, the blade/host communication mechanism and the host application being asynchronous modules in
the system, it is almost impossible to avoid race conditions. Such race conditions can be detected and be dealt with by
the host application. The two most common race conditions are incoming/outgoing call collisions and disconnection
collisions. In all cases, the application designer must always let the ISDN stack be the component that decides which
call will win the conflict condition. The call scenarios illustrating these cases are presented in section 8.2.11.

An incoming/outgoing call collision is occurring when the host application tries to make an outgoing call on a B-
channel that is, at the very same moment, being reserved by the ISDN stack for an incoming call. The host application
won’t know that the B-channel is reserved until it receives the incoming call event. This event will be received even
before the outgoing call request’s response. Therefore, the host application must assume that the stack has decided to
let the incoming call allocate the B-channel and need to process the B-channel as an incoming call.

Disconnect collision can occur when both the ISDN stack and the host application tries to disconnect the same call at
the same time. The host application first sends a disconnection request toward the ISDN stack. Immediately after
sending the request, the application receives a disconnection notification because the stack had already disconnected
the call. In that specific case, the disconnection request sent will fail because the call handle will have been freed by
the ISDN stack upon sending the disconnection event. Therefore, the host application must assume that the stack has
cleared the call before and must expect receiving a failure for the disconnection request.

Page 126 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

8.2.9 Original vs extended ISDN APl message

Over the last years, TelcoBridges’ ISDN stack has been deployed in multiple sites and has interoperated with even
more different ISDN switches. Although the vast majority of those switches conform to general specifications, some
private networks are using local customizations (i.e. information elements relevant only to their network) to achieve
some specific features. The original version of the Telcobridges’ ISDN API wasn’t flexible enough to allow the host
application to send and/or receive custom information elements or to even receive the complete content of a primitive.
In fact, the ISDN stack, once the primitive validation was over, was extracting the major information elements (i.e.
CDN, CGN, cause, etc) and sending them toward the host application. This type of API fits very well for applications
that don’t need to decipher any of the local information elements since those custom elements cannot influence the
Q.931 state machine of a call. On the other hand, this type of API cannot be extended easily to support every possible
IEs (as they are locally defined to a specific network). Therefore, an extension API has been designed to support any
possible types of IE in both transmission and reception directions.Since not every customer requires to process custom
information elements, a key point to the addition of the extended API was that the original API would be working
without any modifications to an existing application. The new API is only activated when the

TB640 ISDN_STACK OPTIONS USE EXTENDED ISDN_API option is used upon ISDN stack allocation. If not
activated, the ISDN stack behaves exactly as the original API did.

The major difference between the original and extended API is how IE content is passed within every request and
notification. Using the extended API, every IE is contained into a ‘raw’ IE buffer within each. Thus, the host
application can now fill/parse any outgoing/incoming Q.931 primitive with any possible information element into/from
araw IE buffer. It is no longer limited to specific known information element. The IEs are formatted as per the ITU
Q.931 specification (section 4.5.1). Helping functions have also been created to help the host application to properly
format (or parse) these IEs. The ISDN stack will validate the syntax of the IEs but will simply ignore any non-relevant
IEs in most situations. There are still cases where certain IEs are invalid or incompatible for a specific variant. For
those cases, the ISDN stack will try to map the outgoing potentially invalid IEs to valid information elements. When
this is not possible, the stack will process the primitive as if they were invalid.

Section 8.2.9.1 explains how to send request and receive notification using the extended ISDN API. Section 8.2.9.2
covers the usage of the original APIs. For documentation simplicity, all call scenarios from section 8.2.10 and 8.2.11
are expressed in terms of the extended API. API correspondence between the two APIs is summarized in Table 14,
Table 15 and Table 16.

Table 14 — Common messages used in both original and extended ISDN API

Common ISDN API messages

Description

TB640 MSG _ID ISDN _OP_ALLOC

Allocates an ISDN stack instance and attach it to one/many trunk(s)

TB640_MSG _ID_ISDN_OP FREE

Frees an allocated ISDN stack instance and detach it from one/many
trunk(s)

TB640_MSG_ID ISDN_OP _GET PARAMS

Retrieves the configuration parameters from an ISDN stack instance

TB640 MSG ID ISDN OP GET LIST

Retrieves the list of all allocated ISDN stack handles

TB640 MSG _ID ISDN _OP_CALL GET PARAMS

Retrieves the parameters of a call associated to an ISDN stack instance

TB640 MSG ID ISDN OP CALL GET LIST

Retrieves the list of all calls associated to an ISDN stack instance

TB640_MSG_ID_ISDN_OP_GET NVPARAMS

Retrieves the global system parameters (stored in non-volatile memory)
associated with all ISDN stack instances.

TB640_MSG_ID ISDN_OP_SET NVPARAMS

Modifies the global system parameters (stored in non-volatile memory)
associated with all ISDN stack instances.

TB640_MSG_ID_ISDN_CMD RESTART CHANNEL REQUEST

Requests a state restart (per Q.931 specifications) for one/many B-
channel(s) associated with an ISDN stack instance

TB640 MSG _ID ISDN_CMD_WAKEUP_REQUEST

Requests a D-channel synchronization with peer ISDN stack

TB640_MSG _ID_ISDN_CMD _RESET CHANNEL REQUEST

Requests a local state reset for one/many B-channel(s) associated with
an ISDN stack instance

TB640_MSG_ID_ISDN_STATES_GET

Retrieves the state of an allocated ISDN stack instance regarding the D-
channel and physical trunk status

TB640 MSG ID ISDN STATES CALL GET STATE

Retrieves the current state of a call associated to a ISDN stack instance

TB640_MSG_ID_ISDN_STATES BCHANNEL_SET

Modifies the state of a specific B-channel associated to an allocated
ISDN stack instance

TB640_MSG_ID_ISDN_STATES_BCHANNEL _GET

Retrieves the current state of a specific B-channel associated to an
allocated ISDN stack instance

TB640_MSG_ID_ISDN_NOTIF_STACK_AVAILABILITY

Notification event telling about an ISDN stack’s level of availability to
process ISDN calls.

Copyright © 2002-2008 by TelcoBridges inc.

Page 127

TB640 User's guide

CONFIDENTIAL

9000-00002-2H

TB640_MSG_ID_ISDN_NOTIF_STATUS_INDICATION

TB640_ISDN_STATUS_IND_VALUE PHYSICAL LINE ACTIVATED
TB640_ISDN_STATUS_IND_VALUE_PHYSICAL LINE DEACTIVATED
TB640_ISDN_STATUS_IND_VALUE_LINE READY
TB640_ISDN_STATUS_IND_VALUE_LINE NOT READY
TB640_ISDN_STATUS_IND_VALUE_RESTART ACK
TB640_ISDN_STATUS_IND_VALUE_NO_CHANNEL_ERROR
TB640_ISDN_STATUS_IND_VALUE_BCHANNEL STATE_CHANGE
TB640_ISDN_STATUS_IND_VALUE_BCHANNEL_STATE_CHANGE_ACK

Notification event telling about a stack or call specific state change

Trunk is in service (no LOS, no AIS, no RAI)

Trunk is out-of-service (LOS and/or AIS and/or RAI)

D-channel is in service

D-channel is out-of-service

Result of a previous RESTART request on one/many B-channel(s)

‘No more channel’ error notification upon outgoing or incoming call event
Indication that a B-channel has just changed its state

Confirmation of a previous B-channel state change request

Table 15 — Matching between original and extended ISDN messages

Original ISDN API

Extended ISDN API

TB640 MSG _ID ISDN_CMD_CONNECT REQUEST

TB640 MSG _ID ISDN _CMD_INITIATE CALL

TB640_MSG _ID_ISDN_CMD_CONNECT RESPONSE

TB640_MSG_ID ISDN_CMD_STATE CHANGE_REQUEST
(TB640_ISDNMGR_REQUEST TYPE_CONNECT RESPONSE)

TB640_MSG_ID_ISDN_CMD_MORE_INFO_REQUEST

TB640_MSG_ID_ISDN_CMD_STATE CHANGE_REQUEST
(TB640 ISDNMGR _REQUEST TYPE MORE INFO)

TB640_MSG_ID_ISDN_CMD_CONNECT ACK_REQUEST

TB640_MSG_ID_ISDN_CMD_STATE CHANGE_REQUEST
(TB640_ISDNMGR_REQUEST TYPE CONNECT ACK)

TB640_MSG_ID_ISDN_CMD _DISCONNECT REQUEST

TB640 MSG_ID ISDN_CMD _STATE CHANGE REQUEST
(TB640_ISDNMGR_REQUEST TYPE_DISCONNECT)

TB640_MSG _ID_ISDN_CMD_KEYPAD REQUEST

TB640_MSG_ID_ISDN_CMD_STATE CHANGE_REQUEST
(TB640_ISDNMGR_REQUEST TYPE KEYPAD)

TB640_MSG_ID_ISDN_CMD_ALERT REQUEST

TB640_MSG_ID_ISDN_CMD_STATE_CHANGE_REQUEST
(TB640 ISDNMGR_REQUEST TYPE ALERT)

TB640_MSG_ID_ISDN_CMD_CALL_PROCEEDING_REQUEST

TB640 MSG_ID ISDN CMD_STATE CHANGE REQUEST
(TB640_ISDNMGR_REQUEST TYPE CALL PROCEEDING)

TB640_MSG_ID_ISDN_CMD_PROGRESS REQUEST

TB640 MSG_ID ISDN_CMD_STATE CHANGE REQUEST
(TB640_ISDNMGR_REQUEST TYPE_PROGRESS)

TB640_MSG_ID_ISDN_NOTIF_CONNECT INDICATION
TB640 MSG ID ISDN NOTIF CALL PRESENT INDICATION

TB640_MSG_ID_ISDN_NOTIF_INCOMING CALL

TB640_MSG_ID_ISDN_NOTIF_CONNECT CONFIRM

TB640 MSG_ID_ISDN_NOTIF_STATE CHANGE EVENT
(TB640_ISDNMGR_NOTIF_TYPE_CONNECT CONFIRM)

TB640_MSG_ID_ISDN_NOTIF_DISCONNECT INDICATION

TB640_MSG_ID_ISDN_NOTIF_STATE_CHANGE EVENT
(TB640_ISDNMGR NOTIF TYPE DISCONNECT)

TB640_MSG_ID_ISDN_NOTIF_DISCONNECT CONFIRM

TB640_MSG_ID ISDN_NOTIF_STATE_CHANGE_EVENT
(TB640_ISDNMGR NOTIF_TYPE DISCONNECT CONFIRM)

TB640_MSG_ID_ISDN_NOTIF_KEYPAD INDICATION

TB640_MSG_ID_ISDN_NOTIF_STATE_CHANGE_EVENT
(TB640_ISDNMGR_NOTIF_TYPE_KEYPAD)

TB640_MSG_ID_ISDN_NOTIF_CALL_PROCEEDING INDICATION

TB640 MSG_ID_ISDN_NOTIF_STATE CHANGE EVENT
(TB640_ISDNMGR_NOTIF_TYPE_CALL PROCEEDING)

TB640_MSG _ID_ISDN_NOTIF_ALERT INDICATION

TB640_MSG_ID_ISDN_NOTIF_STATE CHANGE EVENT
(TB640_ISDNMGR_NOTIF TYPE ALERT)

TB640_MSG_ID_ISDN_NOTIF_PROGRESS_INDICATION

TB640_MSG_ID_ISDN NOTIF_STATE CHANGE EVENT
(TB640_ISDNMGR NOTIF_TYPE PROGRESS)

TB640_MSG_ID_ISDN_NOTIF_STATUS_INDICATION

TB640_ISDN_STATUS IND_VALUE MISC_INFO
TB640_ISDN_STATUS_IND_VALUE_CAUSE_INFO_IE
TB640_ISDN_STATUS IND_VALUE DISPLAY INFO IE
TB640_ISDN_STATUS IND_VALUE SIGNAL INFO IE,
TB640_ISDN_STATUS_IND_VALUE PROGRESS_INDICATOR_IE
TB640_ISDN_STATUS IND VALUE FEATURE INDICATION IE
TB640_ISDN_STATUS_IND_VALUE CONNECT RECEIVED
TB640_ISDN_STATUS_IND_VALUE DISCONNECT RECEIVED
TB640_ISDN_STATUS_IND_VALUE NOTIFICATION INDICATOR_IE
TB640_ISDN_STATUS_IND_VALUE US_NI INFO_REQUEST IE
TB640_ISDN_STATUS_IND_VALUE_SENDING COMPLETED
TB640_ISDN_STATUS_IND_VALUE MORE_INFO

TB640_MSG_ID_ISDN_NOTIF_STATE_CHANGE _EVENT

IE is received in IE raw buffer in the associated event (no separate event)
IE is received in IE raw buffer in the associated event (no separate event)
IE is received in IE raw buffer in the associated event (no separate event)
IE is received in IE raw buffer in the associated event (no separate event)
IE is received in IE raw buffer in the associated event (no separate event)
IE is received in IE raw buffer in the associated event (no separate event)
TB640_ISDNMGR_NOTIF_TYPE_NETWORK_CONNECT
TB640_ISDNMGR_NOTIF_TYPE_NETWORK_DISCONNECT

IE is received in IE raw buffer in the associated event (no separate event)
IE is received in IE raw buffer in the associated event (no separate event)
IE is received in IE raw buffer in the associated event (no separate event)
TB640 ISDNMGR_NOTIF TYPE SETUP ACK

Page 128

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

CONFIDENTIAL

TB640 User's guide

Table 16 - Messages used in Extended ISDN API

Extended ISDN API messages

Description

TB640 MSG ID ISDN CMD INITIATE CALL

Requests an outgoing call establishment through a SETUP primitive

TB640_MSG_ID ISDN_CMD_STATE CHANGE_REQUEST
(TB640 ISDNMGR_REQUEST TYPE CONNECT RESPONSE)

Requests a CONNECT primitive to be sent

TB640_MSG_ID_ISDN_CMD_STATE_CHANGE_REQUEST
(TB640_ISDNMGR_REQUEST TYPE MORE INFO)

Requests a SETUP_ACK primitive to be sent (in overlap mode).

TB640_MSG_ID_ISDN_CMD_STATE CHANGE _REQUEST
(TB640_ISDNMGR_REQUEST TYPE_CONNECT ACK)

Requests a CONNECT ACK primitive to be sent

TB640 MSG_ID ISDN_CMD_STATE CHANGE REQUEST
(TB640_ISDNMGR_REQUEST TYPE_DISCONNECT)

Requests a DISC primitive to be sent

TB640_MSG_ID_ISDN_CMD_STATE CHANGE_REQUEST
(TB640 ISDNMGR REQUEST TYPE KEYPAD)

Requests an INFO primitive (with a ‘CDN’ or ‘Keypad’ IE) to be sent

TB640_MSG_ID_ISDN_CMD_STATE CHANGE_REQUEST
(TB640_ISDNMGR_REQUEST TYPE ALERT)

Requests a ALERT primitive to be sent

TB640 MSG ID ISDN CMD STATE CHANGE REQUEST
(TB640 ISDNMGR_REQUEST TYPE CALL PROCEEDING)

Requests a CALL_PROCEEDING primitive to be sent

TB640_ MSG_ID ISDN CMD STATE CHANGE REQUEST
(TB640_ISDNMGR _REQUEST TYPE PROGRESS)

Requests a PROGRESS primitive to be sent

TB640_MSG_ID_ISDN_NOTIF_INCOMING_CALL

Notification event telling about a received incoming call through a
SETUP primitive.

TB640 MSG_ID_ISDN_NOTIF_STATE_CHANGE_EVENT
(TB640_ISDNMGR_NOTIF_TYPE_CONNECT CONFIRM)

Notification event telling about a received CONNECT _ACK primitive

TB640 MSG_ID ISDN NOTIF STATE CHANGE EVENT
(TB640_ISDNMGR_NOTIF_TYPE DISCONNECT)

Notification event telling about a received DISC primitive

TB640_MSG_ID_ISDN_NOTIF_STATE_CHANGE_EVENT
(TB640_ISDNMGR_NOTIF_TYPE_DISCONNECT CONFIRM)

Notification event telling about a received RELEASE primitive

TB640_MSG_ID_ISDN NOTIF_STATE CHANGE EVENT
(TB640_ISDNMGR NOTIF_TYPE KEYPAD)

Notification event telling about a received INFO primitive (with a
‘CDN’ or ‘Keypad’ IE)

TB640_ MSG_ID ISDN NOTIF_STATE CHANGE EVENT
(TB640_ISDNMGR _NOTIF TYPE CALL PROCEEDING)

Notification event telling about a received CALL_PROCEEDING
primitive

TB640 MSG_ID_ISDN_NOTIF_STATE CHANGE EVENT
(TB640_ISDNMGR_NOTIF_TYPE_ALERT)

Notification event telling about a received ALERT primitive

TB640_MSG_ID_ISDN_NOTIF_STATE_CHANGE EVENT
(TB640_ISDNMGR NOTIF_TYPE PROGRESS)

Notification event telling about a received PROGRESS primitive

TB640_MSG_ID_ISDN NOTIF_STATE CHANGE EVENT
(TB640_ISDNMGR_NOTIF_TYPE NETWORK_CONNECT)

Notification event telling about a received CONNECT primitive by a
network-side ISDN stack instance

TB640_ MSG_ID ISDN NOTIF_STATE CHANGE EVENT
(TB640_ISDNMGR _NOTIF_TYPE NETWORK_DISCONNECT)

Notification event telling about a received DISC primitive by a network-
side ISDN stack instance

TB640 MSG_ID_ISDN_NOTIF_STATE CHANGE EVENT
(TB640_ISDNMGR_NOTIF_TYPE_SETUP_ACK)

Notification event telling about a received SETUP_ACK primitive

8.2.9.1 Extended ISDN API message

The extended ISDN API mode is activated when the option TB640_ISDN_STACK _OPTIONS USE _EXTENDED ISDN_API is

configured during the stack instance allocation.

& When the extended ISDN API is used, the stack will refuse any requests made with the original API
messages. Also, all notifications will be sent using the extended API events messages.

As explained in section 8.2.9, this mode primarily uses a byte buffer pass any information elements content from and to
an ISDN stack instance. Within this byte buffer, all IEs are formatted as specified in the Q.931 specification (section
4.5.1). For all ISDN messages coming from the host application, the byte buffer will be verified for syntax correctness
and passed to the ISDN stack. Failure to comply with formatting rules of the specification will result in the call refusal.
Only relevant information elements will be used by the ISDN stack depending on the message. Some information
elements are mandatory depending on the request type and some others are prohibited because it would interfere with
the ISDN state machine. Table 17 lists the different IE restrictions depending on the request type. Other information
elements (completely ignored by the ISDN stack) will be inserted transparently to the Q.931 data flow going out from
the blade. Furthermore, if the ISDN stack generates internally an IE (e.g. bearer capabilities) that is also contained in
the byte buffer, the outgoing Q.931 message will contain the information element from the byte buffer. This gives the
user application almost complete control over the information elements. This also has the drawback that the

Copyright © 2002-2008 by TelcoBridges inc.

Page 129

TB640 User's guide CONFIDENTIAL 9000-00002-2H

application can insert or replace IEs that will make the remote switch to refuse the incoming call because of
incompatibility issues. Section 0 explains in detail how to fill specific information element into ISDN messages.

& Only insert information elements that are allowed into the targeted ISDN network. Otherwise, the
remote switch is likely to refuse or drop the faulty calls. In case of doubt, only use the mandatory
information elements specified in Table 17. The ISDN stack will ensure to respect the switch variant
restrictions.

As an example, the CMD_INITIATE_CALL message is expected to contain at least the ‘called party number’ information
element. If that specific IE is missing from the byte buffer, the outgoing call will simply be refused. On the other
hand, the byte buffer could contain any other IE, including IE from a different codeset (refer to section 0 or to Q.931
section 4.5.2 to learn about ISDN codesets). The ISDN stack will merge its generated information elements with the
IEs contained in the byte buffer before sending the SETUP primitive to the network.

In the receive direction, the ISDN stack will include all IEs from the received primitive into the byte buffer included in
the notification. Therefore, the user application will actually receive a raw buffer containing all information elements
at every steps of a call state. The host application needs to parse through the list of information elements to retrieve the
ones that are relevant to the application (e.g. called party number, calling party number, etc). Section 8.2.9.1.2 explains
in detail how to search for specific information elements.

Table 17 — Allowed, typical and prohibited IEs depending on request type

Request type Mandatory Typical IE(s) Prohibited IE(s)
IE(s)
TB640_MSG_ID_ISDN_CMD_INITIATE_CALL Called party number Calling party nunber Channel identification*
Bearer capabilities
High layer compatibility
Low layer compatibility
User to user
Redirecting
Sending complete
TB640_MSG_ID_ISDN_CMD_STATE_CHANGE_REQUEST None User to user Channel identification
(TB640_ISDNMGR_REQUEST TYPE _CONNECT_RESPONSE)
TB640_MSG_ID ISDN_CMD_STATE CHANGE REQUEST None None Channel identification
(TB640_ISDNMGR_REQUEST TYPE MORE _INFO)
TB640 MSG_ID ISDN_CMD STATE_CHANGE_REQUEST None None Channel identification
(TB640_ ISDNMGR_REQUEST TYPE CONNECT_ ACK)
TB640_MSG_ID_ISDN_CMD_STATE_CHANGE_REQUEST Cause User to user Channel identification
(TB640_ISDNMGR_REQUEST TYPE DISCONNECT)
TB640_MSG_ID_ISDN_CMD_STATE _CHANGE_REQUEST Keypad facility Sending complete Channel identification
(TB640_ISDNMGR_REQUEST TYPE KEYPAD)
TB640_MSG_ID_ISDN_CMD_STATE CHANGE REQUEST None Progress indicator Channel identification
(TB640 ISDNMGR _REQUEST TYPE ALERT)
TB640_MSG_ID_ISDN_CMD_STATE _CHANGE_REQUEST None None Channel identification
(TB640 ISDNMGR_REQUEST TYPE CALL PROCEEDING)
TB640_MSG_ID_ISDN_CMD_STATE_CHANGE_REQUEST Progress indicator None Channel identification
(TB640 ISDNMGR REQUEST TYPE PROGRESS)

* Channel is controlled by hTrunkRes rather than this IE.

8.2.9.1.1 How to fill IE buffer in ISDN request

As mentioned before, every IE within a byte buffer must be formatted according to rules from Q.931 section 4.5.1.
This allows the host application to insert IEs that are totally unknown to an ISDN stack as long as it respects those
formatting rules. To ease the programming effort, macros are available to the host application to fill the buffers
properly. These macros format the IE byte information according to the member of a local structure that is more
convenient to work with inside a C/C++ piece of code. Before looking at the helping macros, we need to describe the
raw format of a Q.931 IE.

8.2.9.1.1.1 Native format of an IE

There are two types of information elements: single octet and variable-length IEs. The former, as its name implies, is
defined by a single octet and does not contain any payload. Since the first octet of an IE is always its identification

Page 130 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

code, these single-octet IE are totally defined by their ID. The coding format specifies that the most significant bit of
an IE identification code indicates if it is a single octet IE (bit8 set to 1) or a variable-length IE (bit8 set to 0). As an
example, the single-octet IE ‘sending complete’ is totally defined its IE identification code (0xA1) as shown below:

8 7 6 5 4 3 2 1 Octet
| 1] 0x21 | 1

The later type of information element always contains a minimum of 2 bytes. As shown below, the first byte is the IE
identification code and is followed by the payload length (which can be zero).

7 6 5 4 3 2 1 Octet
0 Information element identifier 1
Length of contents of information element (octets) 2
Contents of information element 3
etc.

The only restriction is that variable-length information elements need to be place in ascending numerical order so that
an ISDN stack can easily determine if some mandatory IEs are missing from a primitive without having to scan
through the whole IE buffer. This rule from the Q.931 spec also applies for the host application when filling the byte
buffer with information element. It is important to note that a single-octet information element can be found anywhere
in a byte buffer regardless of it identifier code since the rule only applies to variable-length IEs.

& [E within the byte buffer must be written in ascending order based on their information element IE as
specified by Q.931 section 4.5.1. This rule applies only for variable-length IE. Single octet IE can
be placed anywhere in the byte buffer.

8.2.9.1.1.2 Working with different codesets

Due to the encoding of information element ID field, there is only a limited number of IE identifier that can exist. To
enable IE extension, the concept of ‘codeset’ is defined by the Q.931 specifications (section 4.5.2). Codesets can be
viewed as categories of information elements. By default, all information elements described in the Q.931
specifications and this document are from codeset 0. There are 5 different codesets that can be used:

Codeset 0 is the default (and mandatory) codeset and supported IE are defined in Q.931 section 4.5
Codeset 4 is reserved for use by ISO/IEC Standards.

Codeset 5 is reserved for information elements reserved for national use.

Codeset 6 is reserved for information elements specific to the local network (either public or private).
Codeset 7 is reserved for user-specific information elements.

An information element identifier has a specific meaning only into a specific codeset. This means that IE identifier
0xA1 (i.e. sending complete) from codeset 0 does not have the same meaning in codeset 6. It is possible, within the
same primitive, to have IEs from different codesets. To do so, a single octet IE exists to switch from one codeset to the
other. The base rule is that it is only possible to switch to an higher codeset (i.e. from 0 to 6). The shift can be
temporary (i.e. only affect the next IE) or permanent (the rest of the buffer is encoded in the new codeset). The
temporary shift is referred to as “non-locking codeset shift”. The format of the codeset shift IE is shown below:

8 7 6 5 4 3 2 1 Octet
Shift identifier
1 0 0 1 0 New codeset identification 1
T

"0" in this position
indicates locking shift

Since the ISDN stack has only interest in codeset 0 IEs (because they may be state affecting), all IEs from different
codesets are ignored by the stack and sent to the user application (or sent to the network transparently). The extended

Copyright © 2002-2008 by TelcoBridges inc. Page 131

TB640 User's guide CONFIDENTIAL 9000-00002-2H

ISDN API allows the user to fill or parse these IEs and extract meaningful information. For example, a local ISDN
network could use a codeset 6 IE to pass the type of phone terminal that is used when the call is established. This
information, not useful for the ISDN stack, could be used to change billing information of the call by the application.
Below is an example of a SETUP message containing an IE from codeset 6 (local network):

// Time:14:30:10.015#000 - > length=67 SAPI=0, CR=0, TEI=0 [I] PF= 0 NR=78 NS= 17
Call reference -> 1

[0x05] 00000101 SETUP

0x04] 00000100 Bearer capability ->

0x03] 00000011 IE Length =3

0x80] -00----- Coding Standard: ITU-T
0x80] ---00000 Information transfer capability: Speech
0x90] -00----- Transfer mode: Circuit mode

0x90] ———10000 Information transfer rate: 64kbps
0xA3]---00011 User information layer 1: G.711 Alaw
0x18] 00011000 Channel identification->

0x03] 00000011 IE Length =3

0xA9] -0------ Implicitly identified

0xA9] --1----- Primary rate interface

0xA9] ----1--- Indicated channel is exclusive

0xA9] ----- 0-- Channel identified is not the D channel

0xA9] ------ 01 Information channel selection: B1 channel
0x83] -00----- Coding Standard: ITU-T

0x83] ---0---- Channel is indicated by the number

0x83] ------ 11 Channel type/map element type: B channel units

0x6C] 01101100 Calling party number->

0x06] 00000110 IE Length =6

0x21] -010---- Type of number: National number

0x21] ----0001 Numbering plan identification: ISDN/telephony numbering plan
0x80] -00----- Presentation indicator: Presentation allowed

0x80] ------ 00 Screening indicator: User-provided, not screened Number: 5555
0x70]1 01110000 Called party number->

0x01] 00000001 IE Length =1

0xA1]-010---- Type of number: National number

0xA1] ----0001 Numbering plan identification: ISDN/telephony numbering plan Number:
0x9E] 10011110 Non-locking Shift to codeset 6 -> IE specific to the local network
0x40] 01000000 IE from codeset 6 ->

0x04] 00000100 IE Length =4

0x01] 00000001

0x02] 00000010

0x03] 00000011

0x04] 00000100

Therefore, when filling or parsing a raw IE buffer, the host application must be careful and track in which codeset the
filling/parsing process is currently in as an identical IE id may have a different meaning depending on the current
active codeset.

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[0x81] -0000001 Channel number: 1
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

8.2.9.1.1.3 Helping macros

To help create human-readable piece of code, helping macros have been designed to ease the IE formatting and
inserting. The helping macros (include the source code) are available in the API header file th640 isdnmgr ie.h from
the TB640 package. Currently available macros are summarized in Table 18.

Table 18 - IE formatting helping macros

Information element Helping macros C structure associated with the IE
Calling party number TB640 ISDN WRITE CGN TB640 ISDNMGR IE CGN
Called party number TB640_ISDN_WRITE _CDN TB640_ISDNMGR_IE_CDN
Keypad facility TB640 ISDN_WRITE KEYPAD FACILITY TB640 ISDNMGR _IE KEYPAD FACILITY
Progress indicator TB640 ISDN_WRITE PROGRESS INDICATOR | TB640 ISDNMGR IE PROGRESS INDICATOR
User to user TB640 ISDN WRITE USER TO USER TB640 ISDNMGR _IE USER TO USER
Cause TB640 ISDN_WRITE_CAUSE TB640 ISDNMGR _IE_CAUSE
Redirecting TB640_ISDN_WRITE REDIRECTING TB640 ISDNMGR_IE_REDIRECTING
Not specific to a particular IE TB640 ISDNMGR WRITE SINGLE OCTET IE | IE Id provided by the user
Not specific to a particular IE TB640 ISDNMGR_WRITE VAR _LENGTH_IE Any buffer provided by the user
Not specific to a particular IE TB640 ISDNMGR_COPY IE Raw IE buffer provided by the user and its

Page 132 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

| | associated read offset pointers.

When filling a byte buffer with information elements, the host application can make use of these macros to convert [E
content from a C structure into its Q.931 format. The macros also manages the ‘write pointer’ into the byte buffer so
that it is easy to write multiple information elements one after the other. Below is an example of code using the macros
to fill the TB640_MSG_ID_ISDN_CMD_INITIATE_CALL message. Looking at the sample code ‘isdnext’ also gives other sets of
examples.

/* Fill with IEs */
pReg->un32IeBufferSize

0;
/* Let's fill the IEs IN THE NUMERICAL ORDER to follow Q.931 section 4.5.1 encoding rules */

[KKK kK ok ok ok ok ok ok ok ok ok ok K ok K ok ok kK ok ok ok ok ok ok ok ok K ok K ok ok k kK ok o ok ok ok ok Kk Kk

* Format 'Calling party number' IE *

Kk kK kK ok Kk kK kK ok K ok ok K ok K ok K ok kK ok Kk ok Kk kK ok ok Kk kK Kk Kk kK ok k

Cgn.TypeOfNumber = TB640 ISDNMGR TYPE OF NUMBER NATIONAL;
Cgn.NumberingPlan = TB640 ISDNMGR NUMBERING PLAN ISDN;

Cgn.PresentationAndScreening.fPresentationAndScreeningPresent = TBX_ TRUE;
Cgn.PresentationAndScreening.Presentation = TB640_ISDNMGR PRESENTATION_ INDICATOR ALLOWED;
Cgn.PresentationAndScreening.Screening = TB640_ISDNMGR SCREENING INDICATOR USER PROVIDED NOT SCREENED;

Cgn.un8NbIAS5Characters = strlen(in_pCallContext->aun8OutbandCallingAddress) ;
strcpy (Cgn.aIA5Chars, in_pCallContext->aun8OutbandCallingAddress);

fResultSuccess = TB640_ISDN WRITE CGN (pReg->aun8IleBuffer, &pReg->un32IeBufferSize,
TB640 ISDNMGR MAXIMUM IE BUFFER LEN, &Cgn);
if (!fResultSuccess)
{
TBX EXIT ERROR(result, 0, "Unable to write CGN IE");
}

KKK kK ok ok kK ok K ok ok ok ok K ok K ok ok kK ok K ok ok ok ok ok ok K ok K ok Kk kK ok o ok ok ok ok Kk Kk

* Format 'Called party number' IE *

Kk kK kK h kR kK k kK hkhkhkh Kk khhhkkkk Kk kkkkk Ak Kk kkkkkkkkkkk /

Cdn.TypeOfNumber = TB640 ISDNMGR TYPE OF NUMBER NATIONAL;

Cdn.NumberingPlan = TB640 ISDNMGR NUMBERING PLAN ISDN;
Cdn.un8NbIA5Characters = strlen(in pCallContext->aun80utbandCalledAddress) ;
strcpy (Cdn.aIA5Chars, in pCallContext->aun8OutbandCalledAddress);

fResultSuccess = TB640_ISDN WRITE CDN (pReg->aun8IleBuffer, &pReg->un32IeBufferSize,
TB640 ISDNMGR MAXIMUM IE BUFFER LEN, &Cdn);
if (!fResultSuccess)
{
TBX_EXIT ERROR(result, 0, "Unable to write CDN IE");
}

/K ok K ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok ok K ok Kk

* Format 'Redirecting' IE *
**/

if (strlen(in_pCallContext->aun8Redirecting) > 0)

{
Redirecting.TypeOfNumber = TB640 ISDNMGR TYPE OF NUMBER NATIONAL;
Redirecting.NumberingPlan = TB640 ISDNMGR NUMBERING PLAN ISDN;

Redirecting.PresentationAndScreening. fPresentationAndScreeningPresent = TBX TRUE;
Redirecting.PresentationAndScreening.Presentation = TB640 ISDNMGR PRESENTATION INDICATOR ALLOWED;
Redirecting.PresentationAndScreening.Screening =

TB640 ISDNMGR_SCREENING INDICATOR USER PROVIDED NOT SCREENED;
Redirecting.Reason.fReasonPresent = TBX_ TRUE;
Redirecting.Reason.RedirectingReason = TB640 ISDNMGR REDIRECTING REASON CALL DEFLECTION;

Redirecting.un8NbIA5Characters = strlen(in pCallContext->aun8Redirecting);
strcpy (Redirecting.alA5Chars, in_pCallContext->aun8Redirecting);

fResultSuccess = TB640_ISDN WRITE REDIRECTING (pReg->aun8IeBuffer, &pReg->un32IeBufferSize,
TB640 ISDNMGR MAXIMUM IE BUFFER LEN, &Redirecting);
if (!fResultSuccess)
{
TBX _EXIT ERROR(result, 0, "Unable to write Redirecting IE");
}

Copyright © 2002-2008 by TelcoBridges inc. Page 133

TB640 User's guide CONFIDENTIAL 9000-00002-2H

8.2.9.1.1.4 How to fill new information elements

The formatting macros are only help function to ease the formatting of IE into a raw byte buffer. An application
designer could fill the buffer himself with any IE he desires as long as the format respects Q.931 section 4.5.1. He
could also extend the helping macros of file th640 isdnmrg_ie.h to support new IEs that are currently listed there.
There is no change required to the TB640 firmware in order to support these new IEs.

8.2.9.1.2 How to parse IE buffer in ISDN notification

As mentioned before, every message received from the ISDN stack will contain a buffer with raw IE information (even
IEs that were not used by the ISDN stack). Based on the information contained in those IEs, the application can make
decisions regarding a specific call (e.g. called party number, user-to-user information, etc). To ease the programming
effort, macros are available to the host application to scan the buffers efficiently and find relevant IE for an application.

These macros convert the Q.931 raw IE byte into a C structure that is more convenient to work with inside a C/C++
piece of code. The base principle is that any unknown IE should be ignored by the receiving application. This will
ensure that this application can work in different ISDN networks.

8.2.9.1.2.1 Helping macros

To help create human-readable piece of code, helping macros have been designed to ease the IE scanning from a
received raw IE buffer. The helping macros (include the source code) are available in the API header file
th640 isdnmgr_ie.h from the TB640 package. Currently available parsing macros are summarized in Table 19.

Table 19 - IE parsing helping macros

Information element

Helping macros

C structure associated with the IE

Calling party number

TB640 ISDN READ CGN

TB640 ISDNMGR IE_CGN

Called party number

TB640_ISDN_READ CDN

TB640_ISDNMGR_IE_CDN

Keypad facility

TB640 ISDN_READ KEYPAD FACILITY

TB640 ISDNMGR _IE KEYPAD FACILITY

Progress indicator

TB640 ISDN_READ PROGRESS INDICATOR

TB640 ISDNMGR_IE PROGRESS INDICATOR

User to user

TB640 ISDN_READ USER TO USER

TB640 ISDNMGR_IE USER TO USER

Cause

TB640 ISDN_READ CAUSE

TB640_ISDNMGR _IE_CAUSE

Redirecting

TB640 ISDN_READ REDIRECTING

TB640 ISDNMGR_IE REDIRECTING

Not specific to a particular IE

TB640 ISDNMGR_READ SINGLE OCTET IE

Read IE is returned by argument (single octet)

Not specific to a particular IE

TB640 ISDNMGR _READ VAR LENGTH_IE

IE content returned in a buffer provided by user

Not specific to a particular IE

TB640 ISDNMGR _GET IE_ID

Read IE Id is returned by argument

Not specific to a particular [E

TB640 ISDNMGR _GET IE LENGTH

Read IE length field is returned by argument

Not specific to a particular IE

TB640_ISDNMGR_SKIP_IE

Read offset pointer of a raw buffer is modified to
point to the next IE

Not specific to a particular IE

TB640_ISDNMGR_SEARCH_IE

Read offset pointer of a raw buffer is modified to
point to the desired IE if it is contained in the buffer

When parsing a byte buffer for information elements, the host application can make use of these macros to convert
from Q.931 format to a C structure usable in C/C++ code. The macros also manages the ‘read pointer’ into the byte

buffer so that it is easy to read or search multiple information elements from the same buffer. Below is an example of
code using the macros to parse the TB640_MSG_ID_ISDN_NOTIF_INCOMING_CALL message. Looking at the sample code
‘isdnext’ also gives other sets of examples.

A ksktok stk stolokosksokokodokokoslokokolololoslsloloskolokololokoskolokskok

* Retrieve mandatory called party number *
**/
un320ffset = 0;
fResult = TB640_ISDNMGR_SEARCH_IE (pIsdnlncomingCall->aun8leBuffer, &un320ffset, pIsdnIlncomingCall->un32IleBufferSize,
TB640_ISDNMGR_IE_ID_CALLED_PARTY_NUMBER);
if (fResult != TBX_FALSE)
{
fResult = TB640_ISDN_READ_CDN (pIsdnlncomingCall->aun8leBuffer, un320ffset, pIsdnIncomingCall->un32IeBufferSize, &Cdn);
1
5
if (!fResult)
{

}

/* Copy the 'CDN!' IE into our call context */

TBX_EXIT _ERROR(TBX_RESULT_INVALID PARAM, 0, "Unable to retrieve mandatory 'called party number' IE");

Page 134 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

memcpy (pCallContext->aun8OutbandCalledAddress, Cdn.alASChars, Cdn.un8NbIAS5Characters);
pCallContext->aun8OutbandCalledAddress [Cdn.un8NbIAS5Characters] = 0;

/**

* Retrieve optional calling party number *
**/

un320ffset = 0;

fResult = TB640_ISDNMGR_SEARCH_IE (pIsdnlncomingCall->aun8leBuffer, &un320ffset, pIsdnlncomingCall->un32IeBufferSize,
TB640_ISDNMGR_IE ID_CALLING PARTY_NUMBER);

if (fResult != TBX_FALSE)

{
fResult = TB640_ISDN_READ_CGN (pIsdnIncomingCall->aun8IeBuffer, un320ffset, pIsdnIlncomingCall->un32IleBufferSize, &Cgn);

if (1fResult)

{
TBX_EXIT _ERROR(TBX_RESULT_INVALID PARAM, 0, "Unable to read optional 'calling party number' IE");

1
s

/* Copy the '"CGN' IE into our call context */
memcpy (pCallContext->aun8OutbandCallingAddress, Cgn.alA5Chars, Cgn.un8NbIASCharacters);

pCallContext->aun8OutbandCallingAddress [Cgn.un8NbIA5Characters] = 0;

}

/**

* Retrieve optional redirecting number *
***************************************ﬁ

un320ffset = 0;

fResult = TB640_ISDNMGR_SEARCH_IE (pIsdnlncomingCall->aun8leBuffer, &un320ffset, pIsdnIlncomingCall->un32IleBufferSize,
TB640_ISDNMGR_IE_ID_REDIRECTING);

if (fResult != TBX_FALSE)

{
fResult = TB640_ISDN_READ_REDIRECTING (plsdnIncomingCall->aun8leBuffer, un320ffset, plsdnlncomingCall->un32IeBufferSize,

&Redirecting);
if (!fResult)
{

TBX EXIT ERROR(TBX RESULT INVALID PARAM, 0, "Unable to read optional 'calling party number' [E");
}

/* Copy the 'redirecting' IE into our call context */
memcpy (pCallContext->aun8OutbandCallingAddress, Redirecting.al A5Chars, Redirecting.un8NbIA5Characters);
pCallContext->aun8OutbandCallingAddress [Redirecting.un8NbIA5Characters] = 0;

8.2.9.1.2.2 How to parse new information elements

The parsing macros are only help function to ease the scanning of IEs from a raw byte buffer. An application designer
could scan the buffer himself to search for any IEs he want. The generic macros xx_GET IE 1D,
xx_GET IE LENGTH, xx_SKIP_IE and xx SEARCH_IE can be used regardless of the IE being scanned for.
Extracting the raw byte information and formatting it to a C structure can still be done using custom-made helping
functions or macros. This means an application designer can extend the helping macros of file th640 isdnmrg _ie.h to
support new IEs. There is no change required to the TB640 firmware in order to parse these new IEs.

8.2.9.2 Original ISDN API message

The original ISDN API is the default API mode in which an ISDN stack will start if the host application didn’t
specified the TB640 ISDN _STACK OPTIONS USE EXTENDED ISDN_API options upon allocation. As
explained in section 8.2.9, this mode primarily uses arrays of bytes to pass specific information elements content from
and to an ISDN stack instance. Basically, it means that an ISDN message will have a field named ‘called party
number’ within its structure if the CDN information elements can be sent or received. This method has the advantage
to be clear on what IE can be processed with a specific primitive. On the other hand, it has the limitation of only
processing known information elements. Furthermore, if a new IE needs to be supported, the API must be changed and
TelcoBridges needs to provide a new software release. The extended ISDN API addresses those two last concerns and
is explained in section 8.2.9.1.

& When the original ISDN API is used, the stack will refuse any requests made with the extended API
messages. Also, all notifications will be sent using the original API events messages.

Copyright © 2002-2008 by TelcoBridges inc. Page 135

TB640 User's guide CONFIDENTIAL 9000-00002-2H

8.2.9.2.1 How to fill or parse Information Elements (IE)

Information elements that are included in an ISDN message need to be filled prior to sending the ISDN messages. This
should follow the ISDN user-network interface standard (Q.931). The TelcoBridges API provides individual fields
within a message for each supported IE and the size and content must be filled properly. The IE identifier does not need
to be specified in the buffer. The length of the payload (not including the IE identifier and the length itself) must be
specified in the xxxSize parameter. So filling the IE will start in the Q.931 structures Octet 3. Most of the IEs are
presented here with some coding examples.

8.2.9.2.1.1 Bearer Capabilities

Refer to "Bearer capabilities" information element as described in Q.931 section 4.5.5.

If un32BearerCapabilitiesSize = 0, the ISDN stack will use default values for this switch variant. If you include this IE,
you must specify the octets according to standard in the aunBearerCapabilities structure. Invalid entries might result in
call refusal. Maximum size of un32BearerCapabilitiesSize for this IE is 12 octets.

8 7 6 5 4 3 2 1 Octet
ext. Coding standard Information transfer capability 3

1
ext. Transfer mode Information transfer rate 4

1
ext. Layer 1 ident. User information layer 1 protocol 5%
0/1 0 1

Code example:
/* Set structure size */
un32BearerCapabilitiesSize = 3;

/* Octet 3: Coding standard = ITU-T (00), Information Transfer Capability = speech (00000) */
aun8BearerCapabilities[0] = 0x80;

/* Octet 4: Transfer Mode = circuit mode (00), Information Transfer rate = 64kbps (10000)*/
aun8BearerCapabilities[1] = 0x90;

/* Octet 5: ext (1), Layer 1 ident (01), User Information layer 1 protocol = G.711 ulaw (00010)*/
aun8BearerCapabilities[2] = 0xA2;

8.2.9.2.1.2 Outband called address

Refer to "Called party number" information element as described in Q.931 section 4.5.8.

Three parameters are provided for the Outband Called Address. un320utbandCalledAddressPrefixLength indicates
the length of the prefix bytes (before the actual number) in the IE included in the aun8OutbandCalledAddress buffer.
If this value is zero, the default values will be used and the buffer must only contains the digits. If this value is set to 1,
the first byte of the aun8OutbandCalledAddress will be the following structure:

8 7 6 5 4 3 2 1 Octet
ext. Type of number Numbering plan identification 3

1

0 Number digits (IAS characters) 4%

un320utbandCalledAddressSize is the size of the data within aun32OutbandCalledAddress (excluding
un320utbandCalledAddressPrefixLength)

Code example:
#define PREFIX LENGTH 1

Page 136 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

/* Use custom prefix */
un320utbandCalledAddressPrefixLength = PREFIX _LENGTH;

/* Set structure size */
un320utbandCalledAddressSize = strlen (szCalledPhoneNb) + PREFIX LENGTH;

If (un320utbandCalledAddressPrefixLength == PREFIX_LENGTH)

{
/* Octet 3: Type of number = National, Numbering plan ID = ISDN (E.164) */
aun8OutbandCalledAddress[0] = 0xAl;
/* Octet 4: Copy content of A5 characters */
strepy (&aun8OutbandCalledAddress[PREFIX _LENGTH], szCalledPhoneNb);
b
else /* un320utbandCalledAddressPrefixLength== 0 */
{
/* Use default stack values for Type of Number and Numbering plan ID */
/* Octet 4: Copy content of A5 characters */
strepy (aun8OutbandCalledAddress, szCalledPhoneNb);
H

8.2.9.2.1.3 Outband called subaddress

Refer to "Called party sub address" information element as described in Q.931 section 4.5.9.
Fill only the subaddress information (octets 4+) in the aun8OutbandCalledSubaddress structure. Maximum size for
un320utbandCalledSubaddressSize is 20 octets.

8 7 6 5 4 3 2 1 Octet
Subaddress information 4
etc.

Code example:

/* Octet 4: Copy content of IA5 characters */
strepy (&aun8OutbandCalledSubaddress[0], szSubAddressNb);

8.2.9.2.1.4 Outband calling address

Refer to "Calling party number" information element as described in Q.931 section 4.5.10.

Three parameters are provided for the Outband Calling Address. un32OutbandCallingAddressPrefixLength indicates
the length of the prefix bytes (before the actual number) in the IE included in the aun8OutbandCallingAddress buffer.
If this value is zero, the default values will be used and the buffer must only contains the digits. If this value is set to 1
or 2, the first bytes of the aun8OutbandCallingAddress will be the following structure:

8 7 6 5 4 3 2 1 Octet
ext. Type of number Numbering plan identification 3
0/1
ext. Presentation Spare Screening 3a*

1 indicator 0 0 0 indicator

0 Number digits (IAS5 characters) 4*

Bit 8 (Ext) of octet 3 must be set to 0 if octet 3a is present

Copyright © 2002-2008 by TelcoBridges inc. Page 137

TB640 User's guide CONFIDENTIAL 9000-00002-2H

un320utbandCallingAddressSize is the size of the data within aun32OutbandCallingAddress (excluding
un320utbandCallingAddressPrefixLength)

Code example:
#define PREFIX LENGTH 2

/* Set structure size */
un32OutbandCallingAddressSize = strlen (szCallingPhoneNb) + PREFIX LENGTH,;

if(fUseCustomPrefix == TBX TRUE)
{

/* Use custom prefix */
un320utbandCallingAddressPrefixLength = PREFIX LENGTH;

/* Octet 3: Ext (0), Type of number = National (010), Numbering plan ID = ISDN (E.164) (0001) */
aun8OutbandCallingAddress[0] = 0x21;

/* Octet 3a: Ext (1), Presentation Ind. = restricted (01), (000), Screening Ind. = Network provided (11) */
aun8OutbandCallingAddress[1] = 0xA3;

/* Octet 4: Copy content of A5 characters */
strepy (&aun8OutbandCallingAddress[PREFIX_LENGTH], szCallingPhoneNb);

else /* fUseCustomPrefix == TBX_ FALSE */

{
/* Use default stack values for Type of Number and Numbering plan ID, presentation and screening */
un32OutbandCallingAddressPrefixLength = 0;
/* Octet 4: Copy content of A5 characters */
strepy (aun8OutbandCallingAddress, szCallingPhoneNDb);
H

8.2.9.2.1.5 Outband calling subaddress

"Calling party sub address" information element as described in Q.931 section 4.5.11.
Fill only the subaddress information (octets 4+) in the aun8OutbandCallingSubaddress structure. Maximum size of
un32OutbandCallingSubaddressSize is 20 octets.

8 7 6 5 4 3 2 1 Octet
Subaddress information 4
etc.

Code example:

/* Octet 4: Copy content of A5 characters */
strepy (&aun8OutbandCallingSubaddress[0], szSubAddressNb);

8.2.9.2.1.6 Cause

Refer to "Cause" information element as described in Q.931 section 4.5.12. This refers to Q.850, section 2.
aun8Cause must be defined when included in a structure. You must specify the octets according to standard in the
aun8Cause structure, but only octets 4 and 5. Invalid entries might result in call refusal.

Page 138 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

Octet
8 7 6 5 4 3 2 1 Q.931
ext. Cause value 4
1
Diagnostic(s) (if any) 5%

Code example:
/* Octet 4: Ext (1), Cause value = Normal, unspecified (001 1111) */
aun8Cause [0] = 0x9F;

/* octet 5: Diagnostic value = none (0) */
aun8Cause [1] = 0x0;

8.2.9.2.1.7 High Layer Compatibility

Refer to "High layer compatibility" information element as described in Q.931 section 4.5.17.

If un32HighLayerCompatibilitySize = 0 , this IE will not be sent. If you include this IE, you must specify the octets
according to standard in the aun8HighLayerCompatibility structure. Invalid entries might result in call refusal.
Maximum size of un32HighLayerCompatibilitySize is 4 octets.

8 7 6 5 4 3 2 1 Octet
ext. Coding standard Interpretation Presentation method | 3

1 of protocol profile
ext. High layer characteristics identification 4
0/1

Code example:
/* Set structure size */
un32HighLayerCompatibilitySize = 2;

/* Octet 3: Ext (1), Coding standard = ITU-T (00), Interpretation=primary (100), Presentation=high layer (01)*/
aun8HighLayerCompatibility [0] = 0x91;

/* Octet 4: Ext (1), High layer ID = telephony (0000001)*/
aun8HighLayerCompatibility [1] = 0x81;

8.2.9.2.1.8 Keypad Facility

Refer to "Keypad facility" information element as described in Q.931 section 4.5.18.
un32KeypadFacilitySize specifies the number of digits (IAS characters) to include in the structure. aun8KeypadFacility
are the IAS characters. Maximum size of un32KeypadFacilitySize is 16 octets.

7 6 5 4 3 2 1 Octet
Keypad facility information (IAS characters) 3
etc.

Code example:
/* Set structure size */
un32KeypadFacilitySize = strlen (szKeypadNb);

/* Octet 3: Copy content of A5 characters */
strepy (aun8KeypadFacility, szKeypadNb);

8.2.9.2.1.9 Layer Compatibility

Copyright © 2002-2008 by TelcoBridges inc. Page 139

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Refer to "Low layer compatibility” information element as described in Q.931 section 4.5.19.

If un32LowLayerCompatibilitySize = 0 , this IE will not be sent. If you include this IE, you must specify the octets
according to standard in the aun8LowLayerCompatibility structure. Invalid entries might result in call refusal.
Maximum size of un32HighLayerCompatibilitySize is 16 octets.

8 7 6 5 4 3 2 1 Octet
ext. Coding standard Information transfer capability 3
0/1
ext. Transfer mode Information transfer rate 4

1
ext. Layer 1 ident. User information layer 1 protocol 5%
0/1 0 1

Code example:
/* Set structure size */
un32LowLayerCompatibilitySize = 2;

/* Octet 3: Ext (1), Coding standard = ITU-T (00), Information Transfer Capability = speech (00000) */
aun8LowLayerCompatibility [0] = 0x80;

/* Octet 4: Ext (1), Transfer Mode = circuit mode (00), Information Transfer rate = 64kbps (10000)*/
aun8LowLayerCompatibility [1] = 0x90;

/* Octet 5: ext (1), Layer 1 ident (01), User Information layer 1 protocol = G.711 ulaw (00010)*/
aun8LowLayerCompatibility [2] = 0xA2;

8.2.9.2.1.10 Progress Indicator

Refer to "Progress indicator" information element as described in Q.931 section 4.5.23.
Fill un8Progressindicator with progress description parameter.

8 7 6 5 4 3 2 1 Octet

ext. Progress description 4
1

Code example:
/* Octet 4: Ext (1), Progress Description = Destination address is non-ISDN (0x02) */
un8Progressindicator = 0x82;

8.2.9.2.1.11 User to User

Refer to "User user" information element as described in Q.931 section 4.5.30.

If un32UserToUserSize = 0, , this IE will not be sent. If you include this IE, you must specify the octets according to
standard in the aun8UserToUser structure. Invalid entries might result in call refusal. Maximum size of
un32UserToUserSize for this IE is octets. This IE is carried transparently over the network.

8 7 6 5 4 3 2 1 Octet
Protocol discriminator 3
User information 4
etc.

Code example:
/* Set structure size */
un32UserToUserSize = 10,

Page 140 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

/* Octet 3: Protocol Discriminator: IA5 characters (0x04) */
aun8UserToUser[0] = 0x04;
strecpy (PTBX_CHAR) &aun8UserToUser[1], "123456789");

8.2.9.2.1.12 User (additionnal IE)

Optional information element(s) the user wants to send as described in Q.931. The only implemented IE is Sending
Complete. Other IEs can be implemented upon customer requests.

Code example:

/* Send a Sending Complete IE */

un32UserSize = 1; /* This IE contains only the IE value */
aun8User[0] = 0xA1; /* Sending Complete IE value */

8.2.9.2.1.13 Redirecting

Refer to "Redirecting" information element as described in Q.931 section 4.6.7.

If un32RedirectingSize = 0 , this IE will not be sent. If you include this IE, you must specify the octets according to
standard in the aun8Redirecting structure. Invalid entries might result in call refusal. Maximum size of
un32RedirectingSize is 16 octets.

8 7 6 5 4 3 2 1 Octet
ext. Type of number Numbering plan identification 3
0/1
ext. Presentation Spare Screening 3a*
0/1 indicator 0 0 0 indicator 1
ext. Spare Reason for redirection 3b*

1 0 0 0 1

Spare Number digits (IA5 characters) 4
0 etc.

Code example:
/* Set structure size */
un32RedirectingSize = strlen (szRedirectingPhoneNDb);

/* Octet 3: Ext (0), Type of number = International (001), Numbering plan ID = ISDN (E.164) (0001) */
aun8Redirecting [0] = 0x11;

/* Octet 3a: Ext (0), Presentation Ind. = restricted (01), (000), Screening Ind. = Network provided (11) */
aun8Redirecting [1] = 0x23;

/* Octet 3b: Ext (1), (000), Reason for redirection. = Call deflection (0100) */
aun8Redirecting [2] = 0x84;

/* Octet 4: Copy content of A5 characters */
strepy (&aun8Redirecting[3], szRedirectingPhoneNDb);

Copyright © 2002-2008 by TelcoBridges inc. Page 141

TB640 User's guide CONFIDENTIAL 9000-00002-2H

8.2.10 PRI ISDN Call scenarios (Stack and TB640 APIs)

The following call scenarios show the different Q.931 API message exchange required to establish a call. Every table
in the following sections is divided in four columns. The leftmost and rightmost columns describe the actual TB640
API messages that are sent and received by the application. The two middle columns represent the Q.931 primitives
exchanged by the Q.931 stacks. Those primitives are never seen by neither user applications. The reader must
remember that each user application request is answered individually by the TB640 blade (not the stack) to confirm
they all have been delivered to the signaling stack. Those blade “responses” are not shown in the call scenarios. Also
note that the call scenarios are shown using the extended API but can be translated to the original API using Table 15.

8.2.10.1

Successful call placed from network-side

Network-side API prim Network- User-side User-side API prim
side Q.931 Q.931
CMD_INITIATE CALL -> SETUP -~ SETUP -> NOTIF INCOMING CALL ->
<-NOTIF STATE CHANGE EVENT <- CALL PROC <- CALL PROC <- CMD_STATE_CHANGE_REQUEST
[NOTIF_TYPE_CALL_PROCEEDING] [REQUEST TYPE CALL PROCEEDING]
(only required for AUS PRI switch variant)
<-NOTIF STATE CHANGE EVENT <- ALERT <- ALERT <- CMD_STATE_CHANGE_REQUEST
[NOTIF TYPE ALERT] [REQUEST TYPE ALERT]
<-NOTIF STATE CHANGE EVENT <- CONN <- CONN <- CMD_STATE_CHANGE_REQUEST
[NOTIF TYPE NETWORK CONNECT] [REQUEST_TYPE_ CONNECT RESPONSE]
CMD STATE CHANGE REQUEST -> CONN_ACK -> CONN_ACK-> <nothing> if response received
[REQUEST TYPE CONNECT ACK] within T313 seconds
<-NOTIF_STATE CHANGE EVENT
[NOTIF TYPE CONNECT CONFIRM]

8.2.10.2 Successful call

placed from network-side (overlap mode)

Network-side API prim Network- User-side User-side API prim
side Q.931 Q.931
CMD_INITIATE CALL -> SETUP -~ SETUP -> NOTIF INCOMING CALL ->
(must contain at least 1 digit information)
<-SETUP_ACK | <-CMD_STATE CHANGE REQUEST
[REQUEST_TYPE_MORE_INFO]
<-NOTIF STATE CHANGE EVENT INFO ->
[NOTIF TYPE SETUP ACK]
NOTIF STATE CHANGE EVENT ->
[NOTTIF TYPE KEYPAD]
INFO -> -

CMD STATE CHANGE REQUEST ->
[REQUEST TYPE KEYPAD]

NOTIF STATE CHANGE EVENT ->
[NOTIF TYPE KEYPAD]

Digit information exchange with REQUEST TYPE KEYPAD and NOTIF TYPE KEYPAD

<-NOTIF STATE CHANGE EVENT <- CALL PROC <- CALL PROC <- CMD_STATE_CHANGE_REQUEST

[NOTIF_TYPE_CALL_PROCEEDING] [REQUEST_TYPE_CALL_PROCEEDING]
(only required for AUS_PRI switch variant)

<-NOTIF STATE CHANGE EVENT <- ALERT <- ALERT <- CMD_STATE_CHANGE_REQUEST
[NOTIF TYPE ALERT] [REQUEST TYPE ALERT]

<-NOTIF STATE CHANGE EVENT <- CONN <-CONN <- CMD_STATE_CHANGE_REQUEST
[NOTIF TYPE NETWORK CONNECT] [REQUEST TYPE CONNECT RESPONSE]

CONN_ACK > | CONN_ACK->

CMD_STATE CHANGE REQUEST ->
[REQUEST TYPE_CONNECT ACK]

<nothing> if response received
within T313 seconds

<-NOTIF STATE CHANGE EVENT
[NOTIF TYPE CONNECT CONFIRM]

Page 142

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

CONFIDENTIAL

TB640 User's guide

8.2.10.3 Unsuccessful Call placed from Network-side
Network-side API prim Network- User-side User-side API prim
side Q.931 Q.931
CMD INITIATE CALL -> SETUP > SETUP -> NOTIF INCOMING CALL ->
<-NOTIF STATE CHANGE EVENT <-CALLPROC | <-CALLPROC | <-CMD_STATE CHANGE_REQUEST
[NOTIE_TYPE_CALL_PROCEEDING] [REQUEST_TYPE_CALL_PROCEEDING]
(only required for AUS PRI switch variant)
<-NOTIF STATE CHANGE EVENT <- ALERT <- ALERT <- CMD_STATE_CHANGE REQUEST
[NOTIF TYPE ALERT] [REQUEST TYPE ALERT]
<lost> <- CONN <- CMD_STATE_CHANGE_REQUEST
[REQUEST TYPE CONNECT RESPONSE]
<lost> T313 expires [only for 4ESS/SESS PRI]
<- CONN
<-NOTIF STATE CHANGE EVENT <-REL T313 expires [ALL SWITCHES -
[NOTIF TYPE DISCONNECT] <-REL for 4ESS/SESS after retrans.]
REL COM -> | ->REL_COM | NOTIF STATE CHANGE EVENT ->

[NOTIF TYPE DISCONNECT]

8.2.104 Unsuccessful Call placed from Network-side (app. Timeout)
Network-side API prim Network- User-side User-side API prim
side Q.931 Q.931
CMD_INITIATE CALL -> SETUP -> SETUP -> NOTIF INCOMING CALL ->
<-NOTIF STATE CHANGE EVENT <- CALL PROC <- CALL PROC <- CMD_STATE_CHANGE_REQUEST
[NOTIF_TYPE_CALL_PROCEEDING] [REQUEST_TYPE_CALL_PROCEEDING]
(only required for AUS PRI switch variant)
<-NOTIF STATE CHANGE EVENT <- ALERT <- ALERT <- CMD_STATE_CHANGE REQUEST
[NOTIF TYPE ALERT] [REQUEST TYPE ALERT]
<lost> <- CONN <- CMD_STATE_CHANGE_REQUEST
[REQUEST TYPE CONNECT RESPONSE]
<lost> T313 expires [only for 4ESS/SESS PRI]
<- CONN
<application timeout>
CMD STATE CHANGE REQUEST -> DISC -> DISC >
[REQUEST TYPE DISCONNECT]
<-NOTIF STATE CHANGE EVENT <-REL <-REL
[TYPE DISCONNECT CONFIRM]
REL_COM-> | REL_COM-> | NOTIF STATE CHANGE EVENT ->

[NOTIF_TYPE DISCONNECT] with IE from
DISC

8.2.10.5

Refused Call placed from

Network-side

Network-side API prim Network- User-side User-side API prim
side Q.931 Q.931
CMD INITIATE CALL -> SETUP > SETUP -> NOTIF INCOMING CALL ->
<-NOTIF STATE CHANGE EVENT <-REL COM | <-REL COM | <-CMD_STATE CHANGE_REQUEST

[NOTIF TYPE DISCONNECT]

[REQUEST TYPE DISCONNECT]

NOTIF STATE CHANGE EVENT ->
[TYPE DISCONNECT CONFIRM]

Copyright © 2002-2008 by TelcoBridges inc.

Page 143

TB640 User's guide

CONFIDENTIAL

9000-00002-2H

8.2.10.6 Discontinued Call placed from Network-side
Network-side API prim Network- User-side User-side API prim
side Q.931 Q.931
CMD INITIATE CALL -> SETUP -> SETUP -> NOTIF INCOMING CALL ->
<-NOTIF STATE CHANGE EVENT <-CALLPROC | <-CALLPROC | <-CMD_STATE CHANGE_REQUEST
[NOTIF_TYPE_CALL_PROCEEDING] [REQUEST_TYPE_CALL_PROCEEDING]
(only required for AUS PRI switch variant)
<-NOTIF STATE CHANGE EVENT <- ALERT <- ALERT <- CMD_STATE_CHANGE REQUEST
[NOTIF TYPE ALERT] [REQUEST TYPE ALERT]
<-NOTIF_ STATE CHANGE EVENT <- CONN <- CONN <- CMD_STATE_CHANGE_REQUEST
[NOTIF TYPE NETWORK CONNECT] [REQUEST TYPE CONNECT RESPONSE]
CMD STATE CHANGE REQUEST -> DISC -> DISC ->
[REQUEST TYPE DISCONNECT]
<-NOTIF_STATE_CHANGE_EVENT <-REL <-REL
[TYPE DISCONNECT CONFIRM]
REL_COM-> | REL_COM-> | NOTIF STATE CHANGE EVENT ->

[NOTIF TYPE DISCONNECT] with IE from
DISC

8.2.10.7

Call placed from Network-side, discontinued by User-side

Network-side API prim Network- User-side User-side API prim
side Q.931 Q9.31

CMD INITIATE CALL -> SETUP -> SETUP -> NOTIF INCOMING CALL ->

<-NOTIF STATE CHANGE EVENT <- CALL PROC <- CALL PROC <- CMD_STATE CHANGE REQUEST
[NOTIF_TYPE_CALL_PROCEEDING] [REQUEST TYPE_CALL_PROCEEDING]

(only required for AUS PRI switch variant)

<-NOTIF_STATE CHANGE EVENT <- ALERT <- ALERT <- CMD_STATE_CHANGE_REQUEST
[NOTIFiTYPEiALERT] [REQUESTiTYPEiALERT]

<-NOTIF STATE CHANGE EVENT <- DISC <- DISC <- CMD_STATE_CHANGE_REQUEST
[NOTIFiTYPEiNETWORKiDISCONNECT] [REQUESTiTYPEiDISCONNECT]

CMD STATE CHANGE REQUEST -> REL -> REL -> NOTIF STATE CHANGE EVENT ->
[REQUESTiTYPEiDISCONNECT] [TYPEiDISCONNECTicONFIRM]

<-NOTIF STATE CHANGE EVENT <-REL_COM | <-REL_COM

[TYPE DISCONNECT CONFIRM]

8.2.10.8

Call collision (same B-channel)

Network-side API prim Network- User-side User-side API prim
side Q.931 0Q9.31
CMD INITIATE CALL -> SETUP ->
<- SETUP <-CMD_INITIATE CALL
<- SETUP SETUP ->
REL_COM -> | <-REL_COM
<-NOTIF_ STATE CHANGE EVENT <-REL_COM | REL_COM -> | NOTIF STATE CHANGE EVENT ->

[NOTIF TYPE DISCONNECT]

[NOTIF TYPE DISCONNECT]

Page 144

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

8.2.10.9

CONFIDENTIAL

TB640 User's guide

Successful Call placed from User-side

Network-side API prim Network- User-side API prim
side Q.931 Q9.31
<-NOTIF INCOMING CALL <- SETUP <- SETUP <-CMD INITIATE CALL
CMD_STATE CHANGE REQUEST -> CALL_PROC | CALL_PROC | NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE CALL PROCEEDING] -> -> [NOTIF TYPE CALL PROCEEDING]
CMD STATE CHANGE REQUEST -> ALERT -> ALERT -> NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE ALERT] [NOTIF TYPE ALERT]
CMD_STATE CHANGE REQUEST-> CONN > CONN -> NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE CONNECT RESPONSE] [NOTIF TYPE CONNECT CONFIRM]
<- <- [optional for network-side]
CONN_ACK | CONN_ACK

8.2.10.10 Successful Call

placed from User-side (overlap mode)

Network-side API prim Network- User-side User-side API prim
side Q.931 0Q9.31
<-NOTIF INCOMING CALL <- SETUP <- SETUP <-CMD_INITIATE CALL
(must contain at least 1 digit information)
CMD STATE CHANGE REQUEST -> SETUP_ACK
[REQUEST TYPE MORE INFO] >
<-INFO NOTIF STATE CHANGE EVENT ->
[NOTIF TYPE SETUP ACK]
<-NOTIF STATE CHANGE EVENT
[NOTIF TYPE KEYPAD]
<-INFO

<-CMD_STATE CHANGE REQUEST
[REQUEST TYPE KEYPAD]

<-NOTIF STATE CHANGE EVENT

[NOTIF TYPE KEYPAD]

Digit information exchange with REQUEST TYPE KEYPAD and NOTIF TYPE KEYPAD

CMD STATE CHANGE REQUEST -> CALL PROC | CALL PROC | NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE CALL PROCEEDING] > > [NOTTF TYPE CALL PROCEEDING]
CMD STATE CHANGE REQUEST -> ALERT -> ALERT -> NOTIF STATE CHANGE EVENT ->
[EEQUESTiTYPEiALERT] [NOT_I FiTYP]EiALERT] -
CMD STATE CHANGE REQUEST-> CONN > CONN > NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE CONNECT RESPONSE] [NOTIF TYPE CONNECT CONFIRM]
<- <- [optional for network-side]
CONN_ACK CONN_ACK

Copyright © 2002-2008 by TelcoBridges inc.

Page 145

TB640 User's guide

CONFIDENTIAL

9000-00002-2H

8.2.10.11 Unsuccessful Call placed from User-side
Network-side API prim Network- User-side User-side API prim
side Q.931 Q9.31
<-NOTIF INCOMING CALL <- SETUP <- SETUP <-CMD INITIATE CALL
CMD_STATE CHANGE REQUEST -> CALL_PROC | CALL_PROC | NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE CALL PROCEEDING] -> -> [NOTIF TYPE CALL PROCEEDING]
CMD STATE CHANGE REQUEST -> ALERT -> ALERT -> NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE ALERT] [NOTIF TYPE ALERT]
CMD_STATE CHANGE REQUEST-> CONN -> <lost>
[REQUESTiTYPE7CONNECT7RESPONSE]
<application timer expires>
<-NOTIF STATE CHANGE EVENT <-DISC <-DISC <-CMD STATE CHANGE REQUEST
[NOTIF TYPE NETWORK DISCONNECT] [REQUEST TYPE DISCONNECT]
CMD STATE CHANGE REQUEST -> REL -> REL -> NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE DISCONNECT] [TYPE DISCONNECT CONFIRM]
<-NOTIF STATE CHANGE EVENT <-REL_COM | <-REL_COM
[TYPE DISCONNECT CONFIRM]

8.2.10.12

Refused Call placed from User-side

Network-side API prim Network- User-side User-side API prim
side Q.931 0Q9.31
<-NOTIF INCOMING CALL <- SETUP <- SETUP <-CMD INITIATE CALL
CMD_STATE CHANGE REQUEST -> REL_COM - REL_COM -> | NOTIF_ STATE CHANGE EVENT ->
[REQUEST TYPE DISCONNECT] >

[NOTIF TYPE DISCONNECT]

<-NOTIF_STATE_CHANGE_ EVENT
[TYPE DISCONNECT CONFIRM]

8.2.10.13 Discontinued Call placed from User-side
Network-side API prim Network- User-side User-side API prim
side Q.931 Q9.31
<-NOTIF INCOMING CALL <- SETUP <- SETUP <-CMD INITIATE CALL
CMD_STATE CHANGE REQUEST -> CALL_PROC | CALL_PROC | NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE CALL PROCEEDING] -> -> [NOTIF TYPE CALL PROCEEDING]
CMD STATE CHANGE REQUEST -> ALERT -> ALERT -> NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE ALERT] [NOTIF TYPE ALERT]
<-NOTIF STATE CHANGE EVENT <- DISC <-DISC <-CMD_STATE CHANGE REQUEST
[NOTIF_TYPE_NETWORK_DISCONNECT] [REQUEST_TYPE_DISCONNECT]
CMD STATE CHANGE REQUEST -> REL > REL > NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE DISCONNECT] [TYPE DISCONNECT CONFIRM]
<-NOTIF STATE CHANGE EVENT <-REL_COM | <-REL_COM

[TYPE DISCONNECT CONFIRM]

Page 146

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

CONFIDENTIAL

TB640 User's guide

8.2.10.14 Call placed from User-side, discontinued by Network-side
Network-side API prim Network- User-side User-side API prim
side Q.931 Q9.31
<-NOTIF INCOMING CALL <- SETUP <- SETUP <-CMD INITIATE CALL
CMD STATE CHANGE REQUEST -> CALL_PROC | CALL_PROC | NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE CALL PROCEEDING] -> -> [NOTIF TYPE CALL PROCEEDING]
CMD STATE CHANGE REQUEST -> ALERT -> ALERT -> NOTIF STATE CHANGE EVENT ->
[REQUEST_TYPE_ALERT] <optional> <optional> [NOTIF_TYPE ALERT]
<optional> <optional>
(1) CMD_STATE CHANGE REQUEST -> DISC > DISC > (4))
[REQUEST TYPE DISCONNECT]
(1) <- NOTIF STATE CHANGE EVENT <-REL <-REL (4)
[TYPE DISCONNECT CONFIRM]
() REL_COM -> | REL_COM -> | (1) NOTIF_STATE CHANGE EVENT ->
[NOTIF_TYPE DISCONNECT] with IE from
DISC
(2) CMD_STATE CHANGE REQUEST -> REL -> REL -> (2) NOTIF STATE CHANGE EVENT ->
[REQUEST TYPE DISCONNECT] [NOTIF TYPE DISCONNECT]
(2) <-NOTIF STATE CHANGE EVENT <-REL_COM | <-REL_COM | (2)

[TYPE DISCONNECT CONFIRM]

(1) These are applicable only when configured with NI2 variant.
(2) These are applicable only when configured with DMS, NETS, HK, 4ESS, SESS, AUS PRI variants.

8.2.10.15 Disconnect collision (scenario starts in active state)
Network-side API prim Network- User-side User-side API prim
side Q.931 Q9.31
CMD_STATE CHANGE REQUEST -> DISC ->
[REQUESTiTYPEiDISCONNECT]
<-DISC <-CMD STATE_ CHANGE REQUEST
[REQUESTiTYPEiDISCONNECT]

<-DISC DISC >
REL > REL ->

<-NOTIF STATE CHANGE EVENT <-REL_COM | REL_COM ->

[TYPE DISCONNECT CONFIRM]

NOTIF STATE CHANGE EVENT ->
[TYPE DISCONNECT CONFIRM]

Copyright © 2002-2008 by TelcoBridges inc.

Page 147

TB640 User's guide CONFIDENTIAL 9000-00002-2H

8.2.11 PRI ISDN Call collision scenarios (TB640 and user application)

The following call scenarios show the different API message exchanges between the TB640 adapter (board or
simulator) and the user applications required to establish/tear down a call. Every table in the following sections is
divided in four columns. The leftmost column describes the Q.931 stacks residing on the TB640 adapter. The middle
column represents the TB640 software creating the interface between the stack and user application. The rightmost
column represents the user application. Thus, the user application will see the message sequence shown in the
rightmost column. It is important to understand that since all messages are asynchronous, the delay between the time a
request has been made from the application and the time that same request is received by the TB640, it is possible to
have some “collisions” between calls. The following scenarios describe most of those corner cases. In those scenarios,
the “responses” for the user application requests are shown in <bold italic>.

8.2.11.1 Connect collision (ISDN call arrived first)

For this collision to occur, there most be only one available timeslot left on the trunk before the scenario begins. In this
case, the call coming from the network gets the last resource assigned while the call initiated by the user application is
refused.

Q.931 stack TB640 User application

SETUP->

Generates NOTIF_INCOMING CALL to the user <-CMD_INITIATE CALL
application (in response to the SETUP) ->

NOTIF INCOMING CALL ->

Generates RSP_CMD_INITIATE CALL (0k) to the
user application in response to the
CMD INITIATE CALL.

RSP _CMD INITIATE CALL (0k)->

Generates a NOTIF _STATE CHANGE EVENT
(NoTIF TYPE DISCONNECT) for the call generated from
the application

NOTIF STATE CHANGE EVENT ->
[NOTIF TYPE DISCONNECT]

8.2.11.2 Connect collision (User application call arrived first)

For this collision to occur, there most be only one available timeslot left on the trunk before the scenario begins. In this
case, the call coming from the network is refused while the last resource is assigned to the call initiated by the user

application.
Q.931 stack TB640 User application
<-CMD INITIATE CALL
SETUP-> Generates RSP_CMD_INITIATE CALL (0k) to the
user application in response to the
CMD INITIATE CALL.
<-REL_COM RSP_CMD_INITIATE_CALL (ok)->
<-REL_COM

8.2.11.3 Connect collision (both call received at the same time in the stack)

This is the same scenario as in section 8.2.10.8. Both sides will receive a disconnect indication.

Page 148 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

8.2.114

CONFIDENTIAL

TB640 User's guide

Disconnect collision (stack disconnect first)

For this collision to occur, the stack (or remote caller) disconnects the call at the same time the user application sends a
message for disconnecting the same call. The two messages “cross each other” over the API transport path (i.e. the

ethernet link).

Q.931 stack

TB640

User application

REL->

Generates NOTIF_DISCONNECT INDICATION to
the user application (in response to the REL)

<-CMD_STATE CHANGE_REQUEST
[REQUEST TYPE DISCONNECT]

NOTIF STATE CHANGE EVENT ->
[NOTIF TYPE DISCONNECT]

Generates RSP_ CMD STATE CHANGE REQUEST
(not found) to the user application in response to the
REQUEST TYPE DISCONNECT.

RSP CMD STATE CHANGE REQUEST (with an

error code NOT FOUND) ->

Copyright © 2002-2008 by TelcoBridges inc.

Page 149

TB640 User's guide CONFIDENTIAL 9000-00002-2H

8.3 CAS Signaling

Most of the R1 and R2 information contained in this section comes from the
“930i Protocol User’s Manual” from PaloVerde Internacional, Inc.

8.3.1 Trunk configuration

Before a signaling stack can be started, the underlying trunk must be configured correctly. The configuration depends
on the CAS switch variant that will be used in the system.

Table 20: CAS variants

Switch variant Trunk type expected
TB640 CAS VARIANT WINK START T1/]1
TB640 CAS VARIANT FXS GROUND START T1/]1
TB640 CAS VARIANT FXS LOOP_START T1/]1
(must be paired with FXO)
TB640 CAS _VARIANT FXO T1/11
(must be paired with FXS LOOP START)
TB640 CAS VARIANT TAIWAN RI1 (also T1/J1 or E1
named « Taiwan modified R1 »)
TB640 CAS VARIANT R2 CHINA El
TB640 CAS VARIANT R2 KOREA El
TB640 CAS VARIANT R2 SINGAPORE El

Note: FXS LOOP_START switch variant is a “user-side” protocol only and must be used with
“network-side” configured as FXO switch variant.

8.3.2 Physical link status

The signaling stack is decoupled of the transport mechanism (both ABCD bits and tones) When a trunk line goes
down, the stack is no longer able to communicate with its peer. When regular alarms of the trunks (Loss-of-signal,
Remote-alarm-indication, etc) occur, the stack sends an event to the user-application

(TB640_MSG ID CAS NOTIF STATUS INDICATION) containing the value

TB640 _CAS STATUS IND VALUE PHYSICAL LINE DEACTIVATED. Note that a user-application can always
read this state using the TB640 MSG ID CAS STATES GET APl message. No connection openings can occur when
the stack is down (all attempts will be refused). Pending connections will probably time-out and be closed by the stack
while active calls will stay opened until manually disconnected by the user-application (remember that it is not because
the stack is down that the already established connections are down as well). The user application should be careful
when closing active calls when the stack is down because it does not mean the peer stack will do it as well. Thus, when
the physical link will be up again, the two stacks will not have the same knowledge of which timeslot is free and which
one is used. To make sure the user-application knows the exact state of the stack at all time, it should first create an
event filter to capture CAS events coming from the stack and then use 7B640 MSG ID CAS STATES GET to retrieve
the current state. Following that sequence will guarantee the application will have an exact knowledge of the stack
state (and never miss the event).

8.3.3 Call handle and user contexts

The CAS stack provides the same user contexts functionality as the ISDN stack as described in section 8.2.4.

Page 150 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

8.3.4 CAS Basic knowledge

As in almost every standardized protocol, there is a multitude of variants and special utilization that makes it very hard
to describe precisely message and event exchanges between two signaling entities. By opposition to Q.931 ISDN
where all exchanges are message-based, R1 and R2 signaling protocols make use of a combination of AB/ABCD bits
tied to the physical transport layer (T1/J1/E1 trunks) and tones.

The AB/ABCD bits usually represent a state changes (OFF-HOOK, ON-HOOK) which translate to a call state such as
“line seizure”, “seizure acknowledge”, “call acceptance”, “call clearance”, etc. Each physical channel (usually
referred to as a “timeslot”) owns a set of those signaling bits. Most of the protocols only make uses of the AB bits but
some variants do implement some charging information into the two remaining bits. Signaling bits transport is
different whether the protocol runs over T1/J1 or E1. When the trunk is configured in T1 or J1, the ABCD bits
transport mechanism is called “robbed-bit signaling” since least significant bits of a timeslot are stolen once in a while
to store the ABCD bits instead of voice data. This makes usual 64kbps channels to go down to 56kbps (but this
degradation is not audible for human hearing). Even if signaling isn’t used during normal lifetime of a voice
conversation, they are still required to detect the “call release” event (when one of the talkers hangs up). Also,
depending on the framing choice (SF/D4, ESF) the T1/J1 frame restricts the number of signaling bits available. In
older framing (SF/D4) only AB bits are available while ESF allows all 4 bits. E1, by opposition, uses a well-known
timeslot to carry all ABCD bits for every voice timeslots. This method is therefore more efficient since it leaves the
complete 64kbps channel to carry voice.

Tones are transmitted in-band between the two signaling entities to exchange other types of information such as “called
number”, “calling number”, etc. As for the signaling bits, the tones are tied to a particular “timeslot” being transferred
into the same channel (or timeslot) as the final voice call. Since those tones are transmitted during call setup phase, the
end-user never gets to hear those tones. The frequencies and duration of tones are generally very well accepted in
standards and localized variants of the protocols. What changes is the meaning of those tones (also referred to as
“digits” sometimes. Those are different for R1 and R2 protocols and even vary amongst R2 variants depending on the
state of the signaling sequence. It would be possible to establish an R1 call only using the ABCD bits but the
receiving end wouldn’t have any information about the “called number”. In R2 CAS signaling, the tones are

mandatory since the receiving end sends commands to the originating end of the information to be transmitted.

Generation and detection of those tones uses internal hardware resources to be connected on the timeslot and be ready
to listen or play frequencies when calls are requested or received. These resource allocations are hidden from the user-
application and dealt-with automatically by the signaling stack. But in order for those resources to be connected and
disconnected automatically, the user application has some responsibilities to follow. The end-user cannot use a trunk
resource (timeslot) returned by the signaling stack until a call is properly connected. Also, the end-user MUST
disconnect any connections to the trunk resource (timeslot) before calling the TB640 MSG CAS CMD_ RELEASE
message. This is shown in the call scenarios in sections 8.3.5.1 and 0.

The two following sections will explain respectively the R1 and R2 types of channel associated signaling more in
details with the meaning of the tones/digits.

Important note 1: CAS protocols are first initiated by CAS bits variations. Thus, these protocols are extremely
sensitive to glitches in the framing encoding used (T1 SF/ESF, E1 double or multi-frame).
Therefore, it is absolutely critical to have the clocks configured properly in a system to
avoid those situations. Make sure your system takes the clock from a reliable and unique
source (e.g. a specific T1/E1 line connected to a network switch of a provider). Having
more than one clock source can also be used in case the primary clock source fails.

Important note 2: T1/J1 CAS protocols have no way to detect the presence of a remote CAS-enabled peer
other than checking the status of the line (LOS/LOF errors) by opposition to E1 that can
detect framing on the signaling timeslot. Since the seizure of a line (i.e. start of a call) is the
variation of CAS bits, “false seizure” condition can occur if one side “unblocks” its
respective timeslots before the other stack was able to set the proper idle patterns on the
CAS bits. Usually, false seizured calls will be closed automatically after a while because
the proper seizure time will not be respected, but this varies from one CAS protocol to the

Copyright © 2002-2008 by TelcoBridges inc. Page 151

TB640 User's guide CONFIDENTIAL 9000-00002-2H

other. Therefore, the user should enable the CAS protocol on the remote side (usually a
switch) after having properly setup the CAS stack on the TB640.

8.3.4.1 R1 CAS Basics

As mentioned before, an R1 CAS call could be established using the ABCD bits alone but wouldn’t carry any call
information (and therefore wouldn’t be much useful except on dedicated lines). In its simplest form, R1 CAS uses
ABCD bits to signal the “line seizure” (call requested), “seizure acknowledge” (peer stack acknowledge the timeslot is
now being used), “call acceptance” (call is answered by peer), “call clearance” (call is either refused or is terminated)
states of a calls. After the peer stack has acknowledged the line seizure, tones (also called DTMF for “dual tone multi
frequency or MF for “multi-frequency”) are played on the selected timeslot to transmit the “called number” to the peer
stack. Basically, each tone represents a digit (similar to the buttons of a touch-tone phone). The peer stack records the
received digits until it decides it has enough information (or until a timeout occurs) and continues with the ABCD bits
signaling to establish the call. Depending on the variant, one or both the call originator and receiver transmit digits
over the channel. It is also possible on certain R1 switch variants, when the call is established from the network side,
for the parties not to send any digit at all. This is due to the R1 specifications making this portion optional from the
network-side for those variants. Once the call is established, the DTMF tones are no longer used for the call. Table 21
and

Page 152 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

CONFIDENTIAL

TB640 User's guide

Table 22 define the meaning of those “digit” in R1 CAS and those are common to all currently supported variants of

R1.

Table 21: R1 CAS DTMF digits

Digit Frequencies Meaning
‘0’ 941Hz + 1336Hz Digit ‘0’
‘1 697Hz + 1209Hz Digit ‘1’
2’ 697Hz + 1336Hz Digit 2’
‘3 697Hz + 1477Hz Digit ‘3’
‘4 770Hz + 1209Hz Digit ‘4’
‘5 770Hz + 1336Hz Digit ‘5’
‘6’ 770Hz + 1477Hz Digit ‘6’
‘7 852Hz + 1209Hz Digit ‘7’
‘8’ 852Hz + 1336Hz Digit ‘8’
‘9 852Hz + 1477Hz Digit ‘9’
‘A’ 697Hz + 1633Hz
‘B’ 770Hz + 1633Hz
‘C 852Hz + 1633Hz
‘D’ 941Hz + 1633Hz
x 941Hz + 1209Hz Digit ‘¥’
941Hz + 1477Hz Digit ‘#’

Copyright © 2002-2008 by TelcoBridges inc.

Page 153

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Table 22: MFR1 CAS digits

Digit Frequencies Meaning
‘0’ 1300Hz + 1500Hz Digit ‘0’
‘1 700Hz + 900Hz Digit ‘1’
‘2’ 700Hz + 1100Hz Digit ‘2’
‘3’ 900Hz + 1100Hz Digit ‘3’
‘4 700Hz + 1300Hz Digit ‘4’
‘5’ 900Hz + 1300Hz Digit ‘5’
‘6’ 1100Hz + 1300Hz Digit ‘6’
‘7 700Hz + 1500Hz Digit ‘7’
‘8’ 900Hz + 1500Hz Digit ‘8’
‘9’ 1100Hz + 1500Hz Digit ‘9’
‘A’ 900Hz + 1700Hz (*end-of-pulsing for Taiwan modified R1)
‘B’ 1300Hz + 1700Hz
‘C 700Hz + 1700Hz
D —
‘E’ 1500Hz + 1700Hz End-of-pulsing (*not used for Taiwan modified R1)
‘F 1100Hz + 1700Hz Start-of-pulsing

One mode of operation of the R1 CAS (except for Taiwan modified R1) is called “Direct inward dialing” (or DID in
short). Basically, this mode is usually used when two PBXs are connected together (no human intervention). Since the
protocol conversation occurs between two machines, the digits are expected to be much faster than when a human
presses the buttons of his touch-tone phone. Thus, the protocol delays are much smaller and the protocol stack expects
all digits to be received from its peer before even informing the application of the new call presence. When not using
DID, the stack expects the digits to come one by one at a slow speed. Therefore, it informs the application about the
new call before the first digit is received. After that, it forwards the digits to the application one by one (as they are
received) for the application to decide, at any moment, to accept or refuse the call. This is shown in the different call
scenarios described in sections 8.3.5.1

8.3.4.2 R2 CAS Basics

R2 signaling has been designed to be more flexible than R1 regarding the amount and type of information transmitted
between the two peers. Although the ABCD bits are different from R1, they mostly reflect the same type of call state
transition. The real difference reside in the signaling information transmitted using tones. First, the number of digits
has been increased compared to R1 signaling. This method is called MFCR2 (multi frequency compelled R2). There
are 15 digits (from ‘1’ to ‘F’ as with the hexadecimal code where ‘0’ stands for 10 — there is no ‘A’) used during tone
exchange. Also, we can really consider the tone portion of a call to be an “exchange of tones” in R2 since both ends of
the calls sends information using those tones.

At this point, we need to define two terms widely used in R2 CAS: the call originator is called “forward” and the call
receiver is called “backward”. These definitions are not to be confused with “network” or “user” side. Both protocol
sides can be either forward or backward and they can be both at the same time since this appellation is only relative to a
specific call. Thus, a signaling stack configured in “network-side” is considered the “forward-end” on an outgoing call
and be considered a “backward-end” on a incoming call (same concept applies for the “user-side”).

We needed to define this terminology because, in R2 signaling, the “backward-end” of a call has the capability of
requesting whatever information is required to complete the call. In short, the backward-end tells to the forward-end
what information to send. After the initial call setup sequence using ABCD bits, the forward end starts sending the
first “called number” digits using MFC-R2 “forward” allocated frequencies (they are different for forward and
backward digits). The forward-end continues playing the tone until it sees a response from the backward-end or until
it times-out. Once the receiving end “sees” the tone, it sends a backward tone telling the forward-end, first, that it can
stop sending the tone and, second, what information to send in the next digit. Thus, the “backward digit string” is a

Page 154 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

series of digits that the receiving-end will send to the originating-end that tells, digit by digit, what to send next (calling
number, category of the call, etc).

This is actually the strength of R2 signaling because the information requested can change depending on the
capabilities or needs of the receiving end. One application of this protocol is when a call is routed from one switch to
the other during call setup (e.g. for long distance call). Every new switch that enters the call flow (thus considered then
backward-end) can ask the originating end (forward-end) to replay all or part of the destination number for routing
purposes.

If R2 would be limited to the capabilities mentioned until now, the protocol would be rather straightforward. But, the
R2 specifications added different meaning for the tones depending on a call state. For example, the forward-end states
can be divided in up to three groups (called I, II and IIT) while the backward-end states can be divided in up to three
groups as well (called A,B and C). Those groups (or states) are used during the tones exchange portion of the call
only. The decision to advance from one group to the other is decided by the “backward digit string” (meaning that one
of the digit in the string tells that further digits will be part of the following group). Thus, the backward-end can
request information such as “called number”, “calling number”, “country code” and so on, as part of the first group and
can then instruct the forward-end to send other type of information. What makes the R2 protocol hard to follow is that
the meaning of those digits is different from one switch variant to the other. For example, there are some special digits
that change the meaning of the digits depending on the command that was requested by the backward-end (i.e. in R2
China).

The following tables from section 8.3.4.2.1 to 8.3.4.2.4 list the meaning of the MFC-R2 digits for each variant. These
won’t tell how to use them in what order for a specific switch. The end-user would have to refer to the particular
switch configuration to make sure. For example, using the R2 China switch variant, a backward digit string of
‘1116111131° tells the forward end to send 4 digits of the “called number” followed by the category digit, then the four
digits of the “calling number” (remember that the forward-end always start the “dialog” by sending the first digit of the
“called number” which is then answered by the first digit of the backward digit string). The signaling stack also has
the possibility to automatically request digits until the forward-end has no more to send using the ‘R’ value in the
backward digit string. This value is not part of the R2 protocol and is added to avoid the need to dynamically change
the backward digit string. For example, the string “11161R31” does the same thing as the previous one except the
backward-end will repeat the ‘1’ digits until it receives a terminating digit ‘F’ from the forward-end. In this case, it
allows the backward-end to accumulate a “calling number” of an unknown size.

Those previous string works for R2 China variant but wouldn’t work for R2 Korea or Singapore. A backward string
equivalent for R2 Korea would look like “1115555536” (or “1115R36”) and “1116666631” (or “1116R31”) for R2
Singapore. The following tables only give a summary of the meaning of each digit. The end-user must understand
how the particular switch works in order to make a successful call with this product.

Copyright © 2002-2008 by TelcoBridges inc. Page 155

TB640 User's guide

8.3.4.2.1 R2 China digits
Table 23: R2 CAS China, Group I (forward) digits

CONFIDENTIAL

Signal | Digit Frequencies Meaning
I-1 ‘T 1380Hz + 1500Hz Digit ‘1’
1-2 ‘2 1380Hz + 1620Hz Digit ‘2’
1-3 ‘3 1500Hz + 1620Hz Digit ‘3’
1-4 ‘4 1380Hz + 1740Hz Digit ‘4’
I-5 ‘5 1500Hz + 1740Hz Digit ‘5’
1-6 ‘6 1620Hz + 1740Hz Digit ‘6’
1-7 7 1380Hz + 1860Hz Digit ‘7’
1-8 ‘g 1500Hz + 1860Hz Digit ‘8’
1-9 ‘o 1620Hz + 1860Hz Digit ‘9’
I-10 ‘0’ 1740Hz + 1860Hz Digit ‘0’
I-11 ‘B’ 1380Hz + 1980Hz Unused
1-12 ‘C’ 1500Hz + 1980Hz No origin information is available
I-13 ‘D’ 1620Hz + 1980Hz Access to test equipment
I-14 ‘E’ 1740Hz + 1980Hz Unused
I-15 ‘F 1860Hz + 1980Hz End of origin number
Table 24: R2 CAS China, Special signals
Signal group Meaning
KA Category code sent in response to group A-6 backward digit
KB Group B backward digit (subscriber status), sent after group A-3 backward
digit. Not available
KC Category code sent in response to group A-6 backward digit
KD Originating call type sent in response to group A-3 backward digit
KE Category code sent sent in response to group A-6 backward digit (toll-to-
local and local-to-local)
Table 25: R2 CAS China, Group I (forward) KA digits
Signal | Digit Frequencies Meaning
I-1 ‘T 1380Hz + 1500Hz Ordinary subscriber, monthly charging
1-2 ‘2 1380Hz + 1620Hz Ordinary subscriber, immediate charging
1-3 ‘3 1500Hz + 1620Hz Ordinary subscriber, traffic service hall
1-4 ‘4 1380Hz + 1740Hz Priority class 1, immediate charging
I-5 ‘5 1500Hz + 1740Hz Priority class 2, free of charge
1-6 ‘6’ 1620Hz + 1740Hz Unused
1-7 ‘7 1380Hz + 1860Hz Priority class 1, monthly charging
1-8 ‘8 1500Hz + 1860Hz Priority class 2, monthly charging
1-9 ‘9 1620Hz + 1860Hz Priority class 1, traffic service hall
1-10 ‘0 1740Hz + 1860Hz Toll free of charge
I-11 ‘B’ 1380Hz + 1980Hz Unused
1-12 ‘C 1500Hz + 1980Hz Unused
I-13 ‘D’ 1620Hz + 1980Hz Test call
I-14 ‘E’ 1740Hz + 1980Hz Unused
I-15 ‘F 1860Hz + 1980Hz Unused

Page 156

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

9000-00002-2H

CONFIDENTIAL

Table 26: R2 CAS China, G

roup I (forward) KC digits

TB640 User's guide

Signal | Digit Frequencies
I-11 ‘B’ 1380Hz + 1980Hz Priority class 1, use microwave
transmission/International operator position
1-12 ‘C’ 1500Hz + 1980Hz “7” calls with specific number
1-13 ‘D’ 1620Hz + 1980Hz Test call
1-14 ‘B’ 1740Hz + 1980Hz Priority class 2, use superior quality cable
I-15 ‘F’ 1860Hz + 1980Hz Unused
Table 27: R2 CAS China, Group I (forward) KE digits
Signal | Digit Frequencies Meaning
I-11 ‘B’ 1380Hz + 1980Hz “H”-Tandem mark (local calls only(
1-12 ‘C 1500Hz + 1980Hz Unused
1-13 ‘D’ 1620Hz + 1980Hz Test call
1-14 ‘E’ 1740Hz + 1980Hz Unused
I-15 ‘F’ 1860Hz + 1980Hz Unused
Table 28: R2 CAS China, Group II (forward) KD digits
Signal | Digit Frequencies Meaning
1I-1 ‘1’ 1380Hz + 1980Hz Semi-automatic toll call from operator
1I-2 ‘2’ 1500Hz + 1980Hz Automatic toll call
11-3 ‘3’ 1620Hz + 1980Hz Local call
11-4 ‘4’ 1740Hz + 1980Hz Local data call
1I-5 ‘5’ 1860Hz + 1980Hz Space
11-6 ‘6’ 1620Hz + 1740Hz Test call
Table 29: R2 CAS China, Group A (backward) digits
| Signal | Digit Frequencies Meaning
A-1 ‘1 1140Hz + 1020Hz Send next digit (n+1)
A-2 2’ 1140Hz + 900Hz Send first destination digit
A-3 ‘3 1020Hz + 900Hz Send KD category, expects group B
A-4 ‘4’ 1140Hz + 780Hz Congestion, abort call
A-5 ‘5’ 1020Hz + 780Hz Unassigned number, abort call
A-6 ‘6’ 900Hz + 780Hz Send calling party category KA, KC or KE
Table 30: R2 CAS China, Group B (backward) digits
Signal | Digit Frequencies Meaning
B-1 ‘T 1140Hz + 1020Hz Subscriber line free
B-2 ‘2 1140Hz + 900Hz Subscriber busy in a local call
B-3 ‘3 1020Hz + 900Hz Subscriber busy in a toll call
B-4 ‘4 1140Hz + 780Hz Congestion, abort call
B-5 ‘5 1020Hz + 780Hz Unassigned number, abort call
B-6 ‘6’ 900Hz + 780Hz Unused for toll calls, PBX line free for local
calls

Copyright © 2002-2008 by TelcoBridges inc.

Page 157

TB640 User's guide

8.3.4.2.2 R2 Korea digits
Table 31: R2 CAS Korea, Group I (forward) digits

CONFIDENTIAL

Signal | Digit Frequencies Meaning
I-1 ‘T 1380Hz + 1500Hz Digit ‘1’
1-2 ‘2 1380Hz + 1620Hz Digit ‘2’
1-3 ‘3 1500Hz + 1620Hz Digit ‘3’
1-4 ‘4 1380Hz + 1740Hz Digit ‘4’
I-5 ‘5 1500Hz + 1740Hz Digit ‘5’
1-6 ‘6’ 1620Hz + 1740Hz Digit ‘6’
1-7 7 1380Hz + 1860Hz Digit ‘7’
1-8 ‘8’ 1500Hz + 1860Hz Digit ‘8’
1-9 ‘o 1620Hz + 1860Hz Digit ‘9’
1-10 ‘0’ 1740Hz + 1860Hz Digit ‘0’
I-11 ‘B’ 1380Hz + 1980Hz Unused
1-12 ‘C 1500Hz + 1980Hz No origin information is available
1-13 ‘D’ 1620Hz + 1980Hz Access to test equipment
1-14 ‘B’ 1740Hz + 1980Hz Unused
I-15 ‘F’ 1860Hz + 1980Hz End of origin number
Table 32: R2 CAS Korea, Group II (forward) digits
| Signal | Digit Frequencies Meaning
II-1 ‘r 1380Hz + 1500Hz Regular subscriber without priority (default)
I1-2 ‘2 1380Hz + 1620Hz Subscriber with priority
11-3 ‘3’ 1500Hz + 1620Hz Test or maintenance equipment
11-4 ‘4 1380Hz + 1740Hz Pay telephone
I1-5 ‘5’ 1500Hz + 1740Hz Operator originated call
1I-6 ‘6 1620Hz + 1740Hz Subscriber using data communication
equipment
11-7 ‘7 1380Hz + 1860Hz Unused
11-8 ‘8’ 1500Hz + 1860Hz Unused
11-9 ‘9 1620Hz + 1860Hz Unused
11-10 ‘0’ 1740Hz + 1860Hz Unused
1I-11 ‘B’ 1380Hz + 1980Hz Unused
11-12 ‘C 1500Hz + 1980Hz Unused
1I-13 ‘D’ 1620Hz + 1980Hz Unused
11-14 ‘B’ 1740Hz + 1980Hz Unused
1I-15 ‘F 1860Hz + 1980Hz Unused

Page 158

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

9000-00002-2H

CONFIDENTIAL

Table 33: R2 CAS Korea, Group A (backward) digits

TB640 User's guide

Signal | Digit Frequencies Meaning
A-1 ‘T 1140Hz + 1020Hz Send next digit (n+1)
A-2 2’ 1140Hz + 900Hz Send last but one digit (n-1)
A-3 ‘3 1020Hz + 900Hz Send KD category, expect group B
A-4 ‘4 1140Hz + 780Hz Congestion, abort call
A-5 ‘5’ 1020Hz + 780Hz Send category, origin if repeated
A-6 ‘6 900Hz + 780Hz Address complete, connect call and charge
A-7 7 1140Hz + 660Hz Send last but two digits (n-2)
A-8 ‘8’ 1020Hz + 660Hz Send last but three digits (n-3)
A-9 ‘9 900Hz + 660Hz Send first destination digit
A-10 ‘0’ 780Hz + 660Hz Unused

A-11 ‘B’ 1140Hz + 540Hz Unused

A-12 ‘C’ 1020Hz + 540Hz Unused

A-13 ‘D’ 900Hz + 540Hz Unused

A-14 ‘E’ 780Hz + 540Hz Unused

A-15 ‘F’ 660Hz + 540Hz Unused

Table 34: R2 CAS Korea, Group B (backward) digits
| Signal | Digit Frequencies Meaning

B-1 ‘1’ 1140Hz + 1020Hz Called party free, last party release
B-2 2’ 1140Hz + 900Hz Subscriber number has changed
B-3 ‘3’ 1020Hz + 900Hz Called party busy
B-4 ‘4’ 1140Hz + 780Hz Congestion, abort call
B-5 ‘5’ 1020Hz + 780Hz Unassigned number
B-6 ‘6’ 900Hz + 780Hz Called party free, charge on answer
B-7 ‘7 1140Hz + 660Hz Called party free, no charge
B-8 ‘8’ 1020Hz + 660Hz Subscriber line out of order
B-9 ‘9 900Hz + 660Hz Unused

B-10 ‘0’ 780Hz + 660Hz Unused

B-11 ‘B’ 1140Hz + 540Hz Unused

B-12 ‘C 1020Hz + 540Hz Unused

B-13 ‘D’ 900Hz + 540Hz Unused

B-14 ‘B’ 780Hz + 540Hz Unused

B-15 ‘F’ 660Hz + 540Hz Unused

Copyright © 2002-2008 by TelcoBridges inc.

Page 159

TB640 User's guide

CONFIDENTIAL

8.3.4.2.3 R2 Singapore digits

9000-00002-2H

Table 35: R2 CAS Singapore, Group I (forward) digits

Signal | Digit Frequencies Meaning
I-1 ‘T 1380Hz + 1500Hz Digit ‘1’
1-2 ‘2 1380Hz + 1620Hz Digit ‘2’
1-3 ‘3 1500Hz + 1620Hz Digit ‘3’
1-4 ‘4 1380Hz + 1740Hz Digit ‘4’
I-5 ‘5 1500Hz + 1740Hz Digit ‘5’
1-6 ‘6’ 1620Hz + 1740Hz Digit ‘6’
1-7 7 1380Hz + 1860Hz Digit ‘7’
1-8 ‘8’ 1500Hz + 1860Hz Digit ‘8’
1-9 ‘o 1620Hz + 1860Hz Digit ‘9’
1-10 ‘0’ 1740Hz + 1860Hz Digit ‘0’
I-11 ‘B’ 1380Hz + 1980Hz Access to centralized intercept service
1-12 ‘C 1500Hz + 1980Hz Request by A-x signal not accepted
I-13 ‘D’ 1620Hz + 1980Hz Unused
1-14 ‘B’ 1740Hz + 1980Hz Unused
I-15 ‘F’ 1860Hz + 1980Hz End of origin/destination number
Table 36: R2 CAS Singapore, Group II (forward) digits
| Signal | Digit Frequencies Meaning
II-1 ‘r 1380Hz + 1500Hz Operator with trunk offering facility
II-2 ‘2 1380Hz + 1620Hz Ordinary subscriber or operator without trunk
offering facility (default)
11-3 ‘3’ 1500Hz + 1620Hz Payphone
11-4 ‘4 1380Hz + 1740Hz Ex-CLI display
I1-5 ‘5’ 1500Hz + 1740Hz Coinafon
11-6 ‘6’ 1620Hz + 1740Hz Test equipment
11-7 ‘7 1380Hz + 1860Hz Line test desk
11-8 ‘8’ 1500Hz + 1860Hz Interception operator
I1-9 ‘o 1620Hz + 1860Hz Call from transit exchange which normally
does not have the calling subscriber number
information (e.g. trunk/gateway)
II-10 ‘0 1740Hz + 1860Hz Indication of a transferred call.
1I-11 ‘B’ 1380Hz + 1980Hz Unused
11-12 ‘C 1500Hz + 1980Hz Unused
1I-13 ‘D’ 1620Hz + 1980Hz Unused
11-14 ‘B’ 1740Hz + 1980Hz Unused
1I-15 ‘F 1860Hz + 1980Hz Unused

Page 160

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

CONFIDENTIAL

TB640 User's guide

Table 37: R2 CAS Singapore, Group III (forward) digits

Signal | Digit Frequencies Meaning
111-1 ‘T 1380Hz + 1500Hz Digit ‘1’
111-2 ‘2 1380Hz + 1620Hz Digit 2’
111-3 ‘3 1500Hz + 1620Hz Digit ‘3’
111-4 ‘4 1380Hz + 1740Hz Digit ‘4’
111-5 ‘5 1500Hz + 1740Hz Digit ‘5’
111-6 ‘6’ 1620Hz + 1740Hz Digit ‘6’
111-7 7 1380Hz + 1860Hz Digit ‘7’
111-8 ‘8’ 1500Hz + 1860Hz Digit ‘8’
111-9 ‘9 1620Hz + 1860Hz Digit ‘9’
111-10 ‘0’ 1740Hz + 1860Hz Digit ‘0’
1I-11 ‘B’ 1380Hz + 1980Hz Unused
1I-12 ‘C 1500Hz + 1980Hz CLI not available
11-13 ‘D’ 1620Hz + 1980Hz Unused
111-14 ‘E’ 1740Hz + 1980Hz Unused
III-15 ‘F 1860Hz + 1980Hz End of calling number
Table 38: R2 CAS Singapore, Group A (backward) digits
| Signal | Digit Frequencies Meaning
A-1 ‘1 1140Hz + 1020Hz Send next digit (n+1)
A-2 2’ 1140Hz + 900Hz Send first destination (restart)
A-3 ‘3’ 1020Hz + 900Hz Send category, expect group B
A-4 ‘4’ 1140Hz + 780Hz Congestion, abort call
A-5 ‘5’ 1020Hz + 780Hz Unused
A-6 ‘6’ 900Hz + 780Hz Send category, origin if repeated
A-7 ‘7 1140Hz + 660Hz Send tarif zone
A-8 ‘8’ 1020Hz + 660Hz Send last but one digit (n-1)
A-9 ‘9’ 900Hz + 660Hz Send last but two digits (n-2)
A-10 ‘0’ 780Hz + 660Hz Unused
A-11 ‘B’ 1140Hz + 540Hz Unused
A-12 ‘C 1020Hz + 540Hz Unused
A-13 ‘D’ 900Hz + 540Hz Unused
A-14 ‘B’ 780Hz + 540Hz Unused
A-15 ‘F’ 660Hz + 540Hz Unused

Copyright © 2002-2008 by TelcoBridges inc.

Page 161

TB640 User's guide

CONFIDENTIAL

Table 39: R2 CAS Singapore, Group B (backward) digits

Signal | Digit Frequencies Meaning
B-1 ‘T 1140Hz + 1020Hz Called party free, chargeable
B-2 2 1140Hz + 900Hz Called party busy
B-3 ‘3 1020Hz + 900Hz Number requiring re-routing at the originating

local exchange or outgoing exchange

B-4 ‘4 1140Hz + 780Hz Congestion, abort call
B-5 ‘5 1020Hz + 780Hz Called party free, non-chargeable
B-6 ‘6 900Hz + 780Hz Last party release
B-7 7 1140Hz + 660Hz Unallocated number
B-8 ‘8’ 1020Hz + 660Hz Unused
B-9 ‘9 900Hz + 660Hz Unused

B-10 ‘0’ 780Hz + 660Hz Unused

B-11 ‘B’ 1140Hz + 540Hz Unused

B-12 ‘C 1020Hz + 540Hz Unused

B-13 ‘D’ 900Hz + 540Hz Unused

B-14 ‘E’ 780Hz + 540Hz Unused

B-15 ‘F 660Hz + 540Hz Unused

8.3.4.2.4 R2 Bangladesh digits

Table 40: R2 CAS Bangladesh, Group I (forward) digits

Signal | Digit Frequencies Meaning
I-1 ‘T 1380Hz + 1500Hz Digit ‘1’
1-2 ‘2 1380Hz + 1620Hz Digit ‘2’
1-3 ‘3 1500Hz + 1620Hz Digit ‘3’
1-4 ‘4 1380Hz + 1740Hz Digit ‘4’
I-5 ‘5 1500Hz + 1740Hz Digit ‘5’
1-6 ‘6’ 1620Hz + 1740Hz Digit ‘6’
1-7 7 1380Hz + 1860Hz Digit ‘7’
1-8 ‘8’ 1500Hz + 1860Hz Digit ‘8’
1-9 ‘9 1620Hz + 1860Hz Digit ‘9’
1-10 ‘0’ 1740Hz + 1860Hz Digit ‘0’
I-11 ‘B’ 1380Hz + 1980Hz Unused
1-12 ‘C’ 1500Hz + 1980Hz Unused
1-13 ‘D’ 1620Hz + 1980Hz Access to test equipment
1-14 ‘B’ 1740Hz + 1980Hz Unused
I-15 ‘F 1860Hz + 1980Hz End of identification, end of pulsing

Page 162

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

9000-00002-2H

CONFIDENTIAL

Table 41: R2 CAS Bangladesh, Group II (forward) digits

TB640 User's guide

Signal | Digit Frequencies Meaning
11-1 ‘T 1380Hz + 1500Hz Subscriber without priority
11-2 ‘2 1380Hz + 1620Hz Subscriber with priority
11-3 ‘3’ 1500Hz + 1620Hz Maintenance equipment
11-4 ‘4 1380Hz + 1740Hz Unused
11-5 ‘5 1500Hz + 1740Hz Operator
11-6 ‘6 1620Hz + 1740Hz Data transmission
11-7 ‘7 1380Hz + 1860Hz Used for international working
11-8 ‘8 1500Hz + 1860Hz Used for international working
11-9 ‘9’ 1620Hz + 1860Hz Used for international working
II-10 ‘0’ 1740Hz + 1860Hz Used for international working
II-11 ‘B’ 1380Hz + 1980Hz Used for international working
1I-12 ‘C 1500Hz + 1980Hz Spare for national use
II-13 ‘D’ 1620Hz + 1980Hz Spare for national use
I1-14 ‘E’ 1740Hz + 1980Hz Spare for national use
1I-15 ‘F 1860Hz + 1980Hz Spare for national use
Table 42: R2 CAS Bangladesh, Group A (backward) digits
| Signal | Digit Frequencies Meaning
A-1 ‘1 1140Hz + 1020Hz Send next digit (nt+1)
A-2 2’ 1140Hz + 900Hz Send last but one digit (n -1)
A-3 ‘3 1020Hz + 900Hz Send category, change to B signal
A-4 ‘4’ 1140Hz + 780Hz Congestion national network
A-5 ‘5’ 1020Hz + 780Hz Send calling party’s category
A-6 ‘6’ 900Hz + 780Hz Address complete, charge, set-up, speech
conditions
A-7 ‘7 1140Hz + 660Hz Send last but two digits (n — 2)
A-8 ‘8’ 1020Hz + 660Hz Send last but three digits (n — 3)
A-9 ‘9’ 900Hz + 660Hz Send calling’s party number
A-10 ‘0’ 780Hz + 660Hz Unused
Table 43: R2 CAS Bangladesh, Group B (backward) digits
Signal | Digit Frequencies Meaning
B-1 ‘T 1140Hz + 1020Hz Connection under control called subscriber
B-2 2’ 1140Hz + 900Hz Send special information tone
B-3 ‘3 1020Hz + 900Hz Subscriber’s line busy
B-4 ‘4’ 1140Hz + 780Hz Congestion (encountered after A -> B)
B-5 ‘5 1020Hz + 780Hz Unassigned number
B-6 ‘6 900Hz + 780Hz Subscriber’s line free, charge
B-7 ‘7 1140Hz + 660Hz Subscriber’s line free, no charge
B-8 ‘8 1020Hz + 660Hz Subscriber’s line out-of-order
B-9 ‘9 900Hz + 660Hz Unused
B-10 ‘0’ 780Hz + 660Hz Unused

Copyright © 2002-2008 by TelcoBridges inc.

Page 163

TB640 User's guide

CONFIDENTIAL

8.3.4.2.5 R2 Generic digits
Table 44: R2 CAS Generic, Group I (forward) digits

9000-00002-2H

Signal | Digit Frequencies Meaning
I-1 ‘1 1380Hz + 1500Hz Digit ‘1°
1-2 2 1380Hz + 1620Hz Digit ‘2’
1-3 ‘3 1500Hz + 1620Hz Digit ‘3’
1-4 ‘4 1380Hz + 1740Hz Digit ‘4’
I-5 ‘5 1500Hz + 1740Hz Digit ‘5’
1-6 ‘6’ 1620Hz + 1740Hz Digit ‘6’
1-7 7 1380Hz + 1860Hz Digit ‘7’
1-8 ‘8’ 1500Hz + 1860Hz Digit ‘8’
1-9 ‘9 1620Hz + 1860Hz Digit ‘9’
1-10 ‘0’ 1740Hz + 1860Hz Digit ‘0’
I-11 ‘B’ 1380Hz + 1980Hz Unused
1-12 ‘C 1500Hz + 1980Hz No origin information available
1-13 ‘D’ 1620Hz + 1980Hz Access to test equipment
1-14 ‘E’ 1740Hz + 1980Hz Unused
I-15 ‘F’ 1860Hz + 1980Hz End of number
Table 45: R2 CAS Generic, Group II (forward) digits
| Signal | Digit Frequencies Meaning
II-1 ‘r 1380Hz + 1500Hz Regular subscriber without priority
I1-2 ‘2 1380Hz + 1620Hz Subscriber with priority
11-3 ‘3’ 1500Hz + 1620Hz Test or maintenance equipment
11-4 ‘4 1380Hz + 1740Hz Unused
I1-5 ‘5’ 1500Hz + 1740Hz Operator originated call
1I-6 ‘6 1620Hz + 1740Hz Subscriber using data communication
equipment
I1-7 ‘7T 1380Hz + 1860Hz Subscriber (or operator without forward
transfer capability)
11-8 ‘8’ 1500Hz + 1860Hz Unused
11-9 ‘9 1620Hz + 1860Hz Unused
11-10 ‘0’ 1740Hz + 1860Hz Unused
1I-11 ‘B’ 1380Hz + 1980Hz Unused
11-12 ‘C 1500Hz + 1980Hz Unused
11-13 ‘D’ 1620Hz + 1980Hz Unused
11-14 ‘B’ 1740Hz + 1980Hz Unused
11-15 ‘F’ 1860Hz + 1980Hz Unused
Table 46: R2 CAS Generic, Group A (backward) digits
Signal | Digit Frequencies Meaning
A-1 ‘1’ 1140Hz + 1020Hz Send next digit (n+1)
A-2 2’ 1140Hz + 900Hz Send last but one digit (n -1)
A-3 ‘3 1020Hz + 900Hz Send category, expect group B signal
A-4 ‘4 1140Hz + 780Hz Congestion, abort call
A-5 ‘5 1020Hz + 780Hz Send category, origin if repeated
A-6 ‘6 900Hz + 780Hz Address complete, charge, set-up, speech
conditions
A-7 ‘7 1140Hz + 660Hz Send last but two digits (n — 2)
A-8 ‘8’ 1020Hz + 660Hz Send last but three digits (n — 3)

Page 164

Copyright © 2002-2008 by TelcoBridges inc.

TB640 User's guide

9000-00002-2H CONFIDENTIAL
A-9 ‘9’ 900Hz + 660Hz Error, abort call
A-10 ‘0’ 780Hz + 660Hz Error, abort call
A-11 ‘B’ 1140Hz + 540Hz Error, abort call
A-12 ‘C 1020Hz + 540Hz Error, abort call
A-13 ‘D’ 900Hz + 540Hz Error, abort call
A-14 ‘E’ 780Hz + 540Hz Error, abort call
A-15 ‘F’ 660Hz + 540Hz Congestion, abort call

Copyright © 2002-2008 by TelcoBridges inc.

Page 165

TB640 User's guide

Page 166

CONFIDENTIAL

Table 47: R2 CAS Generic, Group B (backward) digits

9000-00002-2H

Signal | Digit Frequencies Meaning
B-1 ‘T 1140Hz + 1020Hz Called party free, answer and connect call
B-2 A 1140Hz + 900HZz Number unreachable, abort call
B-3 ‘3 1020Hz + 900Hz Called party busy, abort call
B-4 ‘4 1140Hz + 780Hz Congestion, abort call
B-5 ‘5’ 1020Hz + 780Hz Unassigned number, abort call
B-6 ‘6 900Hz + 780Hz Called party free, answer and connect call
B-7 ‘7 1140Hz + 660Hz Called party free, answer and connect call
B-8 ‘8 1020Hz + 660HZz Error, abort call
B-9 ‘9 900Hz + 660HZz Error, abort call

B-10 ‘0’ 780Hz + 660HZz Error, abort call

B-11 ‘B’ 1140Hz + 540Hz Error, abort call

B-12 ‘C’ 1020Hz + 540Hz Error, abort call

B-13 ‘D’ 900Hz + 540Hz Error, abort call

B-14 ‘E’ 780Hz + 540Hz Error, abort call

B-15 ‘F’ 660Hz + 540Hz Error, abort call

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

8.3.5 PRI CAS Call scenarios (Stack and TB640 APIs)

The following call scenarios show the different CAS API message exchange required to establish a call. Every table
in the following sections are divided in four columns. The leftmost and rightmost columns describe the actual TB640
API messages that are sent and received by the user applications (both user and network side are shown). The two
middle columns represent the ABCD bits and tones exchanged by the CAS stacks. This information is never seen by
neither user applications. The reader must remember that each request from the user application is answered
individually by the TB640 board (not the stack) to confirm they all have been delivered to the signaling stack. Those
board “responses” are not shown in the call scenarios.

8.3.5.1 R1 CAS (except Taiwan modified R1)

8.3.5.1.1 Successful call placed from network-side (non Direct-Inward-Dialing)

Network-side API prim Physical Physical User-side API prim
Network- User-side
side

CMD CONNECT REQUEST->

ABCD bits exchanges

NOTIF_CONNECT_INDICATION->

Tone (digit
#1)->

NOTIF_KEYPAD INDICATION->

Tone (digit
#x)->

NOTIF_KEYPAD INDICATION->

Tone (final
digit)->

NOTIF_KEYPAD INDICATION->

<-CMD_ACCEPT INCOMING CALL
(optional). <if sent, the user application can use the
timeslot when the response is received>

€ABCD bits <- CMD CONNECT RESPONSE

<-N_CONN_CF <user application can use the timeslot when the
response is received>

<user application can use the timeslot>

8.3.5.1.2 Successful call placed from network-side (Direct-Inward-Dialing)

Network-side API prim Physical Physical User-side API prim
Network- User-side
side

CMD CONNECT REQUEST->

ABCD bits exchanges

NOTIF_CONNECT INDICATION->
<user application can use the timeslot >

€ABCD bits <- CMD CONNECT RESPONSE

<-N CONN CF

<user application can use the timeslot>

Copyright © 2002-2008 by TelcoBridges inc. Page 167

TB640 User's guide

CONFIDENTIAL

9000-00002-2H

8.3.5.1.3 Successful call placed from user-side (non Direct-Inward-Dialing)

Network-side API prim Physical Physical User-side API prim
Network- User-side
side
<-CMD_ CONNECT REQUEST
ABCD bits exchanges
<-NOTIF_CALL PRESENT INDICATION
<- Tone (digit #1)
<-NOTIF KEYPAD INDICATION
<- Tone (digit #x)
<-NOTIF KEYPAD INDICATION
<- Tone (final
digit)
<-NOTIF KEYPAD INDICATION
CMD_ACCEPT INCOMING CALL ->
(optional). <if sent, the user application can use
the timeslot when the response is received
ABCD bits >

CMD_CONNECT_RESPONSE->

<user application can use the timeslot when the
response is received>

N _CONN CF->

<user application can use the timeslot>

8.3.5.1.4 Successful call placed from user-side (Direct-Inward-Dialing)

Network-side API prim Physical Physical User-side API prim
Network- User-side
side
<-CMD CONNECT REQUEST
ABCD bits exchanges

<-NOTIF_CALL PRESENT INDICATION

<user application can use the timeslot>

CMD CONNECT RESPONSE-> ABCD bits >

N CONN CFE->

<user application can use the timeslot>

8.3.5.1.5 Call refused to network/user-side

(timeslot busy or physical line down)

Network-side API prim

Physical
Network-
side

Physical
User-side

User-side API prim

CMD_CONNECT_REQUEST->

< NOTIF_STATUS_INDICATION
(VALUE DISPLAY INFO)

<- NOTIF_DISCONNECT INDICATION

CMD RELEASE->

<- CMD_CONNECT_REQUEST

NOTIF_STATUS_INDICATION
(VALUE DISPLAY INFO) ->

NOTIF_DISCONNECT INDICATION->

<-CMD_RELEASE

Page 168

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

CONFIDENTIAL

TB640 User's guide

8.3.5.1.6 Call stopped to network/user-side because of protocol error

Network-side API prim Physical Physical User-side API prim
Network- User-side
side
CMD CONNECT REQUEST->
ABCD bits exchanges
<- NOTIF DISCONNECT INDICATION
CMD RELEASE->
<- CMD _CONNECT REQUEST
ABCD bits exchanges

NOTIF_DISCONNECT _INDICATION->

<-CMD_RELEASE

8.3.5.1.7 Call refused by user-side (non Direct-Inward-Dialing)

Network-side API prim Physical Physical User-side API prim
Network- User-side
side
CMD_ CONNECT REQUEST->
ABCD bits exchanges
NOTIF_CONNECT INDICATION->
Tone (digit
#1)->
NOTIF KEYPAD INDICATION->
Tone (digit
#x)->
NOTIF KEYPAD INDICATION->
<user application does not need to wait for all digits
to be received before calling
CMD_DISCONNECT REQUEST >
€ ABCD bits <- CMD DISCONNECT REQUEST
ABCD bits~>

<- NOTIF_DISCONNECT INDICATION

<user application MUST disconnect the timeslot
if it was connected>

NOTIF_DISCONNECT_CONFIRM->

CMD_RELEASE->

<-CMD_RELEASE

Copyright © 2002-2008 by TelcoBridges inc.

Page 169

TB640 User's guide

CONFIDENTIAL

9000-00002-2H

8.3.5.1.8 Call refused by user-side (Direct-Inward-Dialing)

Network-side API prim Physical Physical User-side API prim
Network- User-side
side
CMD CONNECT REQUEST->
ABCD bits exchanges
NOTIF_CONNECT INDICATION->
< ABCD bits <- CMD DISCONNECT REQUEST
<- NOTIF_DISCONNECT INDICATION ABCD bits>

<user application MUST disconnect the timeslot
if it was connected>

NOTIF_DISCONNECT_CONFIRM->

CMD_RELEASE->

<-CMD_RELEASE

8.3.5.1.9 Call refused by network-side (non Direct-Inward-Dialing)

Network-side API prim Physical Physical User-side API prim
Network- User-side
side
<-CMD CONNECT REQUEST
ABCD bits exchanges

<-NOTIF_CALL PRESENT INDICATION

<-Tone (digit #1)
<-NOTIF KEYPAD INDICATION

<- Tone (digit #x)
<-NOTIF KEYPAD INDICATION
<user application does not need to wait for all
digits to be received before calling
CMD_CONNECT_RESPONSE>
CMD DISCONNECT REQUEST-> ABCD bits>

<ABCD bits

NOTIF_DISCONNECT INDICATION->

<- NOTIF_DISCONNECT_CONFIRM

<user application MUST disconnect the timeslot if
it was connected>

CMD_RELEASE->

<-CMD_RELEASE

8.3.5.1.10 Call refused by network-side (Direct-Inward-Dialing)
Network-side API prim Physical Physical User-side API prim
Network- User-side
side
<-CMD_CONNECT REQUEST
ABCD bits exchanges
<-NOTIF_CALL PRESENT INDICATION
CMD DISCONNECT REQUEST-> ABCD bits>

<ABCD bits

NOTIF_DISCONNECT _INDICATION->

<- NOTIF_DISCONNECT_CONFIRM

<user application MUST disconnect the timeslot if
it was connected>

CMD_RELEASE->

<-CMD_RELEASE

Page 170

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide
8.3.5.1.11 Call cleared by network
Network-side API prim Physical Physical User-side API prim
Network- User-side
side
Call already established
CMD DISCONNECT REQUEST-> ABCD bits>
< ABCD bits

NOTIF_DISCONNECT INDICATION->

<- NOTIF_DISCONNECT_CONFIRM

<user application MUST disconnect the timeslot if
it was connected>

<user application MUST disconnect the timeslot
if it was connected>

<-CMD_RELEASE

CMD_RELEASE->

8.3.5.1.12

Call cleared by/user-side

Network-side API prim Physical Physical User-side API prim
Network- User-side
side
Call already established
<ABCD bits <-CMD DISCONNECT REQUEST
ABCD bits>

<-NOTIF_DISCONNECT _INDICATION

<user application MUST disconnect the timeslot
if it was connected>

NOTIF_DISCONNECT_CONFIRM->

CMD_RELEASE->

<user application MUST disconnect the timeslot if
it was connected>

<-CMD_RELEASE

8.3.5.1.13 Disconnect collision (both sides disconnect at the same time)
Network-side API prim Physical Physical User-side API prim
Network- User-side
side
Call already established
ABCD bits > | €ABCD bits

CMD_DISCONNECT _REQUEST->

<-CMD_DISCONNECT REQUEST

<-NOTIF_DISCONNECT_CONFIRM

NOTIF_DISCONNECT _CONFIRM->

<user application MUST disconnect the timeslot
if it was connected>

<user application MUST disconnect the timeslot if
it was connected>

CMD_RELEASE->

<-CMD_RELEASE

8.3.5.1.14 Disconnect collision (disconnect almost at the same time)
Network-side API prim Physical User-side API prim
Network- User-side
side
Call already established
<ABCD bits <-CMD DISCONNECT REQUEST
ABCD bits >

CMD DISCONNECT REQUEST->

<-NOTIF_DISCONNECT INDICATION

NOTIF_DISCONNECT CONFIRM->

<user application MUST disconnect the timeslot
if it was connected>

<user application MUST disconnect the timeslot if
it was connected>

CMD_RELEASE->

<-CMD_RELEASE

<response to CMD_DISCONNECT REQUEST
will be an error code)

Copyright © 2002-2008 by TelcoBridges inc.

Page 171

TB640 User's guide

8.3.5.2 Taiwan modified R1

CONFIDENTIAL

9000-00002-2H

Within this section, we no longer refer to the ‘network’ nor ‘user’ sides as the state machine only depends on which
side initiated the call. ‘Forward-side’ refers to the originating side and ‘backward-side’ refers to the receiving side.
The same Taiwan modified R1 CAS stack can be forward and backward at the same time on different timeslots.

8.3.5.2.1 Successful call placed from forward-side

Forward-side API prim Physical Physical Backward-side API prim
Forward- Backward-
side side
CMD CONNECT REQUEST->
ABCD bits exchanges

MRF1 tone exchanges

< NOTIF_STATUS_IND
(MDRI DIALING DONE with status = 0x01)

NOTIF_CONNECT_INDICATION->

< ABCD bits

<- CMD_CONNECT RESPONSE

<-N_CONN_CF

<user application can use the timeslot when the
response is received>

<user application can use the timeslot>

8.3.5.2.2 Call refused to forward-side (timeslot busy or physical line down)

Forward-side API prim

Physical
Forward-
side

Physical
Backward-
side

Backward-side API prim

CMD_CONNECT_REQUEST->

<- NOTIF_DISCONNECT _INDICATION

CMD_RELEASE->

8.3.5.2.3 Call stopped to forwar:

-side because of protocol error

Forward-side API prim Physical Physical Backward-side API prim
Forward- Backward-
side side
CMD CONNECT REQUEST->
ABCD bits exchanges

MRF]1 tone exchanges

<-NOTIF_STATUS_IND
(MDR1 DIALING DONE with status = 0x05

<- NOTIF_DISCONNECT _INDICATION

CMD_RELEASE->

8.3.5.2.4 Call refused by backward-side

Forward-side API prim Physical Physical Backward-side API prim
Forward- | Backward-
side side
CMD_CONNECT_REQUEST->
ABCD bits exchanges

MRF]1 tone exchanges

<-NOTIF_STATUS_IND
(MDRI DIALING DONE with status = 0x01)

NOTIF_CONNECT_INDICATION->

< ABCD bits

<- CMD_DISCONNECT REQUEST

<- NOTIF_DISCONNECT _INDICATION

ABCD bits >

CMD_RELEASE->

NOTIF_DISCONNECT_CONFIRM ->

<-CMD_RELEASE

Page 172

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

CONFIDENTIAL

8.3.5.2.5 Call cleared by forward -side

TB640 User's guide

Forward-side API prim Physical Physical Backward-side API prim
Forward- Backward-
side side
Call already established
CMD DISCONNECT REQUEST-> ABCD bits>
€ ABCD bits NOTIF DISCONNECT INDICATION->
<- NOTIF_DISCONNECT CONFIRM <user application MUST disconnect the timeslot if
it was connected>
<user application MUST disconnect the timeslot <-CMD_RELEASE
if it was connected>
CMD RELEASE->
8.3.5.2.6 Call cleared by backward-side
Forward-side API prim Physical Physical Backward-side API prim
Forward- Backward-
side side
Call already established
€ABCD bits <-CMD DISCONNECT REQUEST
ABCD bits~>

<-NOTIF_DISCONNECT _INDICATION

<user application MUST disconnect the timeslot
if it was connected>

NOTIF_DISCONNECT_CONFIRM->

CMD_RELEASE->

<user application MUST disconnect the timeslot if
it was connected>

<-CMD_RELEASE

8.3.5.2.7 Disconnect collision (b

oth sides disconnect at

the same time)

Forward-side API prim Physical Backward-side API prim
Forward- Backward-
side side
Call already established
ABCD bits > | €ABCD bits

CMD_DISCONNECT _REQUEST->

<-CMD_DISCONNECT REQUEST

<-NOTIF_DISCONNECT_CONFIRM

NOTIF_DISCONNECT _CONFIRM->

<user application MUST disconnect the timeslot
if it was connected>

<user application MUST disconnect the timeslot if
it was connected>

CMD_RELEASE->

<-CMD_RELEASE

8.3.5.2.8 Disconnect collision (disconnect almost at the same time)

Forward-side API prim Physical Physical Backward-side API prim
Forward- Backward-
side side
Call already established
€ABCD bits <-CMD DISCONNECT REQUEST
ABCD bits >

CMD DISCONNECT REQUEST->

<-NOTIF_DISCONNECT INDICATION

NOTIF_DISCONNECT CONFIRM->

<user application MUST disconnect the timeslot
if it was connected>

<user application MUST disconnect the timeslot if
it was connected>

CMD_RELEASE->

<-CMD_RELEASE

<response to CMD_DISCONNECT REQUEST
will be an error code)

Copyright © 2002-2008 by TelcoBridges inc.

Page 173

TB640 User's guide

8.3.5.3 R2 CAS

CONFIDENTIAL

9000-00002-2H

Within this section, we no longer refer to the ‘network’ nor ‘user’ sides as the state machine only depends on which
side initiated the call. ‘Forward-side’ refers to the originating side and ‘backward-side’ refers to the receiving side.
The same R2 CAS stack can be forward and backward at the same time on different timeslots.

8.3.5.3.1 Successful call placed from forward-side

Forward-side API prim Physical Physical
Forward- Backward-
side side
CMD CONNECT REQUEST->
ABCD bits exchanges

Tone exchan,

ge starting from

forward-side answered by backward-
side

NOTIF_CONNECT _INDICATION->

<- CMD_CONNECT RESPONSE (with a group B
‘accept’ value)

<Group B tone

<- NOTIF_STATUS_INDICATION
(VALUE CAS R2 DIALING DONE)
<result code is 0x01 or 0x02> + <group B
digit>

< ABCD bits

->NOTIF_STATUS_INDICATION
(VALUE_CAS R2 DIALING_DONE)

<-N_CONN_CF

<user application can use the timeslot when the
response is received>

<user application can use the timeslot>

8.3.5.3.2 Call refused to forward-side (timeslot busy or physical line down)

Forward-side API prim

Physical
Forward-
side

Backward-
side

Backward-side API prim

CMD CONNECT REQUEST->

<- NOTIF_STATUS_INDICATION
(VALUE DISPLAY INFO)

<- NOTIF_DISCONNECT INDICATION

CMD_RELEASE->

8.3.5.3.3 Call stopped to forward-side because of protocol error/network congestions or

busy condition

Forward-side API prim Physical Physical Backward-side API prim
Forward- Backward-
side side
CMD_CONNECT REQUEST->
ABCD bits exchanges

Tone exchan

ge starting from

forward-side answered by backward-

side

<-NOTIF_STATUS_ INDICATION
(VALUE_CAS R2 DIALING DONE)
<result code is 0x3, 0x4 or 0x5>

<- NOTIF_DISCONNECT INDICATION

CMD_RELEASE->

Page 174

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H

CONFIDENTIAL

8.3.5.3.4 Call refused by backward-side

TB640 User's guide

Forward-side API prim

Physical Physical
Forward- Backward-
side side

Backward-side API prim

CMD CONNECT REQUEST->

ABCD bits exchanges

Tone exchange starting from
forward-side answered by backward-

side
NOTIF CONNECT INDICATION->
<- CMD_DISCONNECT REQUEST (witha
group B ‘refusal’ value)
<Group B tone
<- NOTIF_STATUS_INDICATION
(VALUE CAS R2 DIALING DONE)
<result code 0x03, 0x04 or 0x05> + <group B
digit>
CMD DISCONNECT REQUEST -> ABCD bits >
->NOTIF DISCONNECT CONFIRM
<- NOTIF_DISCONNECT CONFIRM
CMD_ RELEASE-> <-CMD RELEASE
8.3.5.3.5 Call cleared by forward-side
Forward-side API prim Physical Physical Backward-side API prim
Forward- Backward-
side side
Call already established
CMD_DISCONNECT REQUEST-> ABCD bits>
€ ABCD bits NOTIF _DISCONNECT INDICATION->
<- NOTIF_DISCONNECT_CONFIRM <user application MUST disconnect the timeslot if
it was connected>
<user application MUST disconnect the timeslot <-CMD_RELEASE
if it was connected>
CMD RELEASE->
8.3.5.3.6 Call cleared by backward-side
Forward-side API prim Physical Physical
Forward- Backward-
side side
Call already established
€ ABCD bits <-CMD DISCONNECT REQUEST
<-NOTIF _DISCONNECT INDICATION ABCD bits>
<user application MUST disconnect the timeslot NOTIF_DISCONNECT_CONFIRM->
if it was connected>
CMD_ RELEASE-> <user application MUST disconnect the timeslot if
it was connected>
<-CMD RELEASE

Copyright © 2002-2008 by TelcoBridges inc.

Page 175

TB640 User's guide

CONFIDENTIAL

9000-00002-2H

8.3.5.3.7 Disconnect collision (both sides disconnect at the same time)

Forward-side API prim Physical Physical Backward-side API prim
Forward- Backward-
side side
Call already established
CMD DISCONNECT REQUEST-> ABCD bits > € ABCD bits <-CMD DISCONNECT REQUEST

<-NOTIF_DISCONNECT_CONFIRM

NOTIF_DISCONNECT_CONFIRM->

<user application MUST disconnect the timeslot
if it was connected>

<user application MUST disconnect the timeslot if
it was connected>

CMD_RELEASE->

<-CMD_RELEASE

8.3.5.3.8 Disconnect collision (disconnect almost at the same time)

Forward-side API prim Physical Backward-side API prim
Forward- Backward-
side side
Call already established
< ABCD bits <-CMD DISCONNECT REQUEST
CMD DISCONNECT REQUEST-> ABCD bits >

<-NOTIF_DISCONNECT_INDICATION

NOTIF_DISCONNECT_CONFIRM->

<user application MUST disconnect the timeslot
if it was connected>

<user application MUST disconnect the timeslot if
it was connected>

CMD_RELEASE->

<-CMD_RELEASE

<response to CMD DISCONNECT REQUEST
will be an error code)

Page 176

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

9 CLOCK CONFIGURATIONS

The TB640 adapter can receive its clock from a trunk, a network reference, the H.110 bus, the Multi-Blades Link port
or the local oscillator. The TB-MB adapter can receive its clock from a network reference, the H.110 bus, a Multi-
Blades Link port, a BITS port or the local oscillator. For details concerning the Multi-Blades system clock
synchronization, refer to section 13.2 (Blades synchronization).

9.1 Clocking description

The application must first select the local references (LocalRefl and LocalRef2) from different clock reference source
types. The active local reference will be used to drive the on-board clock, the network reference and the H.110 clocks.
The TB640 and the TB-MB support clock fallback. When the primary clock reference (LocalRef1) fails and local
reference fallback is set to true, the secondary clock reference (LocalRef2) will be selected as current clock reference
and an event will be sent to the host application. The host application can then reconfigure clock and set a new primary
clock reference or restore the primary clock reference and get ready to handle secondary clock reference failure. An
option in the clock configuration lets host application decide to switch back from secondary to primary automatically
or manually.

The local clock reference of a blade can be shared with other blades via H.110 bus signal if in the same cPCI chassis or
via MBL ports if blades have MBL capability option. Refer to section 13.2 (Blades synchronization) for details
concerning the Multi-Blades system clock synchronization via MBL ports. By example, when using H.110 signal to
share clock reference, a second blade can drive CT8B while the first is driving CT8A. The second blade could have
CT8A as primary clock reference and select a local secondary clock source with fallback enabled. All other cards in a
cPCI system should slave on the same H.110 clock (either CT8A or CT8B) driven by the primary adapter in the
system.

The status of the H.110 clock signals can be seen using the TB640 MSG_CLK _SYNC STATES GET message and
will tell the host application if CT8A, CT8B, NetRefl and NetRef2 are driven by at least one adapter. It does not cover
the case for multiple adapters driving the H.110 bus master clock. TelcoBridges has not seen any implementation of the
NetRefl and NetRef2 signals and suggest using default values whenever they need to be configured.

When configuring a trunk, you have the option of setting the fLooptime parameter (TB640_TRUNK CFQG). If set to
TRUE, this has for effect to take the receive clock from the trunk and use it as the transmit clock (instead of using the
internal clock of the TB640). This can be useful to remove undesirable error alarms when the clocks from different
sources are not synchronized. In general, the fLooptime parameter should be set to FALSE.

|_ ______________________ |
TB640 : |
| LocalRef 1 Main |,
Block & ' LocalRef 2| Fallback o B I TR
oC Durces: N Clock | e
|
Trunk O-GSHI Y | CT8A
'{ B Cocal H.110 L >
CT8A N Input < Oscillator Master || CT8B
» Clocks Clock [t >
CT8B J ,
Netref 1 J NetRef 1 Source [HA110 : Netref 1 .
i NetRef 2 Source Netref || Netref 2
Netref 2 i » Clock H -
3 |
|

Figure 65: TB640 internal clock configuration

Copyright © 2002-2008 by TelcoBridges inc. Page 177

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Common configurations are shown below. The tb640clock tool can be used to set the H.110 clock of any adapters in
the system.

9.2 Primary, Secondary Master and Slave

Trunk #0

Trunk #0 Trunk #0

Trunk #1
Trunk #0

[MasterA] [MasterB] [Slave A] [Slave B)
l Y Y
CT8A
CT8B '
Netref 1
Netref 2

Trunk #0 CT8A
Trunk #1 Trunk#0 CT8B CT8B
True True True True
Local Ref 1 | Local Ref 1 - -
CT8A CT8B - -
Primary Secondary - -
False False False False
False False False False

Master A Drives CT8A, Source from Trunk #0, Fallback to Trunk#1
Master B Drives CT8B, Source from CT8A, fallback to Trunk#0
Slave A, Slave to CT8A, fallback to CT8B

Slave B, Slave to CT8A, fallback to CT8B,

Figure 66: Master clock configuration

This configuration shows a primary master driven from two trunks (#0 and #1) and a secondary master ready to take
over from his own trunk #0 if Master A fails.

Page 178 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL

9.3 Primary Master and Standalone

TB640 User's guide

This configuration shows a primary master driven from two trunks (#0 and #32) and a standalone, taking its clocks

from the local oscillators.

PSTN

Trunk #0

Trunk #32

CT8A

Standalone

CT8B

Netref 1

Netref 2

Trunk #0

OsC

Local oscilator
drives local clock

y synchronized)

Trunk #32

0SsC

False

LocalRef1

None

Primary

False

False

Master A Drives CT8A, Source from Trunk #0, fallback to Trunk #32

Standalone, Local oscillator drives local clocks (does not drive/slave to

H.110 bus)

Figure 67: Master and standalone configuration

Copyright © 2002-2008 by TelcoBridges inc.

Page 179

TB640 User's guide CONFIDENTIAL 9000-00002-2H

10 DS3 AND STM-1 CLOCK CONFIGURATIONS

On TB-DS3 and TB-STM1 boards, the clocks are generated using a holdover chip. This chip generates clocks that are
locked and synchronized on clock reference (LocalRefl). Note that no secondary clock reference (LocalRef2) is
available on these kinds of board. When configuring clock, the LocalRef2 parameter must be set to
TB640 CLK SRC NONE and fallback indication must be set to TBX FALSE.

When clock reference is lost, the TB-DS3 and TB-STM1 clocks stay synchronized to previous clock reference and will
slowly drift from its original position and eventually will get desynchronized to previous clock reference. When clock
reference is lost, application gets notified of the event. The holdover chip gives time to application to reconfigure clock
and reduce the effect of losing the clock reference.

On TB-DS3, the clock reference could come from a trunk, a network reference, the H.110 bus, the Multi-Blades Link
port or the local oscillator. On TB-STM1, the clock reference could come from a trunk, a SONET SDH line interface,
a network reference, the H.110 bus, the Multi-Blades Link port or the local oscillator.

For SONET SDH line interface configuration, take care of the loop time setting (fLoopTime parameter). The
SONET SDH payload is floating. I mean there is payload pointer adjustment that allows the SONET _SDH envelop
and payload to be unsynchronized. If the clock reference is a trunk from a SONET SDH line interface then loop time
should be enabled to make transmission in sync with SONET SDH reception. If the clock reference is a SONET SDH
line interface then it possible to use the retrieved clock reference for transmission but it is recommended to enable the
SONET_SDH interface loop time setting. In resume, the SONET SDH interface loop time setting should be set to
TBX TRUE for all cases except when we are master clock reference.

Page 180 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

11 ADAPTER MANAGEMENT
11.1 Resetting the adapter

The TB640 adapter can be reset in many ways. Resetting the TB640 will restart the board local processors and reload
the software for the “next boot directory” (can be checked using install.exe tool).
e Send a message using the API
o Send the “TB640_MSG_ADAPTER OP_RESTART” message with the adapter handle will reset the
adapter
e Install tool
o Option [99]
o In fact, this tool is using the message “Restart”
e push button
o At this time, the “sw2” push button on the front panel resets the TB640 adapter
e In-chassis CPU reset
o The host CPU in the cPCI chassis must generate a Reset on the cPCI chassis backplane (if a host
CPU is present in the system)
e Hot swap
e Power down/up the cPCI chassis

Copyright © 2002-2008 by TelcoBridges inc. Page 181

TB640 User's guide CONFIDENTIAL 9000-00002-2H

12 FAULT TOLERANCE AND HIGH AVAILABILITY

12.1 Network redundancy

The TB640 adapter supports network redundancy. Each TB640 adapter has two Ethernet ports, each with a separate IP
address that can be on the same subnet, or on different subnets. The TBX Host library, used by applications that control
the TB640 adapter, connects by default to an adapter using network redundancy mode (using both Ethernet ports). To
disable this function or change network redundancy parameters, the application can call the
TBXConfigureNetworkRedundancy API call.

In network redundancy mode, the host library connects to each of the adapter’s Ethernet ports. If network connection
with one of the ports is broken (unplugged or failed cable, failed Ethernet switch, failed network), the application will
continue to control the adapter seamlessly. You may have a 2 seconds delay (configurable) in the communication while
the failure is detected, but no messages will be lost. The application will be notified of the Ethernet port failure by an
event of type TBX MSG ID API NOTIF ADAPTER ETH DOWN, but don’t need to take any specific action since
everything will continue to work properly. There will be no loss of anything: messages, calls or states. When the failed
connection is re-established, the application will be notified by an event of type
TBX MSG ID _API NOTIF_ADAPTER _ETH _UP. Again, no specific action is required, everything will continue to
work properly. At any time, the application can call the function TBXGetNetworkRedundancyState to query the
network redundancy state.

We highly recommend using network redundancy through two separate networks (thus using a host that has two
network adapters connected to separate subnets). Duplicating all elements along the path between the host and the
adapter protects against the failure of any element (cable, switch, Ethernet adapter) in one of the two redundant
networks. Otherwise, the failure of any element common to the network path between the host and each of the
adapter’s Ethernet ports will cause the application to be disconnected from the adapter. For example, the TB640
adapter supports having its two Ethernet ports on the same subnet through one or two separate switches, but this
scheme will be redundant only in regard to the Ethernet cables (and the switches if two separate switches are used).
Thus we highly recommend using two separate networks.

Page 182 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

Host
Ethernet
TBX ['T] adapter 2
User Application Host
Library Ethernet
] adapter 1
| ——
Ethernet switch 1 Ethernet switch 2
(subnet 1) (subnet 2)
I I
| |
Ethernet Ethernet
adapter 1 adapter 2

TB640 Adapter

12.2 NP1 facility protection

12.2.1 Overview

TelcoBridges supports board level redundancy also called N+1 (NP1) redundancy scheme. Before describing this
protection scheme, let first define a Facility as a TB640 adapter and its corresponding RPIO (Rear Panel 10). To
achieve NP1 protection, N primary facilities are connected to NP11O boards in a NP1 chassis, with one redundant
facility, ready to take over one of the primary facility.

The TelcoBridges NP1 solution protects N facilities against equipment failure. It is the responsibility of the user
application to monitor adapter faults (see 12.3 Fault Detection) and perform the switch over sequence of the faulty
primary facility to the redundant facility. This sequence should be the following, first, reprogramming all the resources
of the failed adapter to the redundant adapter and, only after this step, sending a fakeover operation message API to the
redundant facility telling which primary facility to protect. The NP1 solution also permits live adapter software update

by the host application.

Copyright © 2002-2008 by TelcoBridges inc. Page 183

TB640 User's guide CONFIDENTIAL 9000-00002-2H

NP1 Chassis
NP1I0 —Cable 1 (1-16) Primary Facility 1
Slot ID P1 | Cable 2 (17132
| 16| | |
oatcrs > ¢ Cable 3 (33448) |
Box L
J 17-32 {) Cable 4 (49:64) TB640
RPIO Primary 1
Active
) 33-48 N
Patch
Box |, 49-64 N
¢ 4

NP1 Backplane Bus

Cable 1 (1-16
NP1I0 (-19 Primary Facility 15
Slot ID P15 Cable 2 (17432
1-16 Cable 3 (33{48)
DSX Patch
Box 17-32 Cable 4 (49:64) TB640
RPIO Primary 15
Active
33-48 N
Patch
DSX Box 49-64
NP1IO . Cable 1(1-6) L s
¢ Redundant Facili
Slot IDR Cable2 (17432) | v
, Cable 3 (33:48)
| Cable 4 (49i64) . TB640
RPIO Redundant
Idle

Figure 68: NP1 normal primary facility traffic flow — Redundant Released

Page 184 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

NP1 Chassis

|, Cable 1 (1-16)
Slot ID P . Cable 2 (17432)

Primary|Facility 1

" 116 | |
Patch [> | Cable3(3348)
Box | | 1732 | Cable 4 (49/64) v
1 RPIO Primary 1
Idle
| 3348 |
Patch 1
Box | | 4964 |
. ne Bus
NP110 Cagle 1 (1-6) . .
Primary Facility 15
Slot ID P15 Catle 2 (17.32)
1-16 Calle 3 (33148)
DSX Patch
Box 17-32 Calle 4 (49l64) TB640
“/‘. RPIO Primary 15
Active
33-48
Patch
DSX Box 49-64

Cablle 1 (1-16)

RedundL\nt Facility

2(1782) |
3 (33148)
Caldle 4 (49:64) . TB640
RPIO Redundant
Active

Figure 69: NP1 switched primary 1 facility traffic flow — Redundant Takeover

12.2.2 Cable Management

As seen on the above figures, the tributaries coming from the DSX patch box are connected to the NP1IO board in the
NP1 chassis (4 cables of 16 trunks). The NP110 board is connected to a RPIO of a facility through 4 cables of 16
trunks. The RPIO cables are also transporting control signals (slot ID, connector ID, switch status) and power.

Copyright © 2002-2008 by TelcoBridges inc. Page 185

TB640 User's guide CONFIDENTIAL 9000-00002-2H

12.2.2.1 Power Sharing

The adapter of a facility is providing the power to the NP11O card though the RPIO cables 1 and 2 (trunk 1-32).
However, the NP110O cards share their power through the NP1 backplane. If the adapter of a facility is removed or the
RPIO cable 1 or 2 disconnected, the NP11O board will remain powered if at least one NP11O in the NP1 chassis is
powered by its facility adapter. Typically, the redundant facility adapter will always remain and power its NP110O
because it is controlling every NP11O primary switch (discussed in section 12.2.4).

12.2.2.2 Slot ID and connector ID

To help the cable management between the facilities RPIO and their respective NP110 and to help reporting
misconnections between them (see cable inconsistency alarm), the facility adapter can read, for each cable, the NP110
slot ID and the NP11O connector ID on which the cable is connected. For example, the cable 1 of the Primary facility 1
should report a slot ID of 1 and a connector ID of 1, the cable 2 of the same facility should report a slot ID of 1 and a
connector ID of 2 and so on. This information can be retrieved on each facility with the

TB640 MSG_ID NP1 OP FACILITY GET_STATE message API. The NP11IO slot ID determines the Facility ID of
the adapter connected to it.

12.2.2.3 Alarms

There are four alarms to indicate a communication or cable connection problem with the NP11O card:
CABLE 1 2 RED ALARM:

This alarm indicates a LOS on the cables 1 and 2. In such a situation, the communication is totally lost with the NP110,
there is either a hardware or cable connection problem. This is a trunk traffic affecting situation (64 trunks).

CABLE 1 2 YELLOW_ALARM:

This alarm indicates a partial lost of communication of the RPIO with the NP1IO on cables 1 and 2. This is a remote
LOS indication from the NP1IO. In such a situation, the information read still valid but there is either a hardware or
cable connection problem. This might lead to a trunk traffic affecting situation.

CABLE_3 4 RED ALARM:

This alarm indicates a LOS on the cables 3 and 4. In such a situation, the communication isn’t lost with the NP110.
However, the information concerning cable 3 and 4 becomes invalid. There is either a hardware or cable connection
problem affecting the traffic on the trunk 32 to 64.

CABLE INCONSISTENCY:

This alarm is raised when the cable information are inconsistent. This situation means there is a cable misconnection.

Alarm indication changes are reported by the adapter through TB640 MSG _ID NP1 NOTIF_ALARMS event
indication messages.

The alarm status can also be retrieved using TB640 MSG ID NP1 OP FACILITY GET STATE message APIL

12.2.3 Chassis Management

To ease the chassis management, the NP1 chassis can be uniquely identified by setting a shelf ID on the redundant
facility. To do so, the host application must send a TB640 MSG ID NP1 _OP REDUNDANT SET SHELFID
message API to the redundant facility adapter. This API is only available on an adapter connected to an NP11O in a
redundant slot. This shelf ID is propagated to all other NP11O cards into the same NP1 chassis. This shelf ID can be
retrieved from any facility adapter using the TB640_ MSG _ID NP1 OP_FACILITY GET STATE message API. The
shelf ID is not a persistent configuration, meaning that under a reboot or reset of the redundant adapter, this value is
reset to an invalid value until it is reprogrammed by the host application.

12.2.4 Takeover operation

The operation of switching over a primary facility to the redundant facility is called a Takeover operation. This
operation instructs the redundant facility to take over the traffic of a primary facility adapter. The redundant NP110
card controls the primary NP110 cards switch through the NP1 backplane. The Takeover operation is performed by
sending a TB640_ MSG ID NP1 _OP _REDUNDANT_ TAKEOVER message API to the redundant facility adapter.
Consecutive Takeover operations can be performed without performing release operation.

Page 186 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

12.2.5 Release operation

The release operation instructs the redundant facility NP11O to release any switch over, therefore, the redundant facility
becomes Idle, meaning there is no more primary facility traffic switched over it. This operation is performed by
sending a TB640 MSG ID NP1 OP REDUNDANT RELEASE message API to the redundant facility adapter.

12.2.6 Traffic Status

On a primary facility, the traffic status represents the NP110 switch state and is reported by the NP110 card to the
adapter. It can be either Active or Idle. The Active state means that traffic is flowing through the NP11O to the primary
facility adapter (see Figure 68). The Idle state means that traffic is switched on the NP1 backplane to the redundant
facility (see Figure 69).

On the redundant facility, the traffic status represents the status of the redundant NP1IO. If the redundant facility is
taking over a primary facility, the traffic state reported is Active. Otherwise, when the redundant facility is released, the
traffic status reported is Idle.

The traffic status can be retrieved on any facility by sending a TB640_MSG _ID NP1 OP_FACILITY GET_STATE
message API.

Traffic change (Active/Idle) notifications are also reported by the facility adapter through
TB640 MSG _ID NP1 NOTIF_TRAFFIC STATE event indication messages.

12.2.7 Primary Presence

The primary presence is a state that is given by the redundant facility NP110. The redundant NP110 card monitors
activity of the primary NP11O cards in the NP1 chassis. When a primary NP11O has proper communication with its
facility adapter, the redundant NP11O see its presence. The primary NP1IO presence can be retrieved by sending a
TB640 MSG ID NP1 OP REDUNDANT GET STATE message API to the redundant facility adapter.

The primary presence change (join/leave) notifications are also reported by the redundant adapter through
TB640 MSG ID NP1 NOTIF _NP1IO_PRESENT event indication messages.

12.2.8 NP110 LED status

The left NP110 LED indicates the card status. A red LED means that the NP11O experience cable problems (any cable
alarm raised), otherwise, the LED is green.

The right NP110 LED indicates the traffic status. A green LED means the traffic status is Active and a red LED means
the traffic status is Idle.

12.3 Fault detection

In order to perform N+1 switchover (use the extra adapter to replace one of the N adapter that failed), the host
application must detect the failure.

Failure conditions may vary from one application to the other. Thus it is the responsibility of the application to
implement appropriate fault detection schemes using the APIs provided by the TB640 adapters.

12.3.1 Events to monitor for fault detection

- TBX MSG ID API NOTIF _ADAPTER ETH DOWN:
Communication with the adapter was interrupted through one of the redundant Ethernet ports.
Because of network redundancy, this is a non fatal error and should be ignored in most situations.

- TBX MSG ID API NOTIF ADAPTER REMOVED:
Communication was lost with the adapter. This is a fatal error if the application does not expect the
adapter to be rebooted or disconnected from the network.

Copyright © 2002-2008 by TelcoBridges inc. Page 187

TB640 User's guide CONFIDENTIAL 9000-00002-2H

- TB640 MSG_ID PMALARMMGR NOTIF_ALARM:

Trunk alarm has been detected. This is a fatal error if the application does not expect the trunk to be
disconnected from the adapter.

- TB640 MSG ID PMALARMMGR NOTIF THRESHOLD:

A trunk error counter has reached the threshold specified by the host application. The application will
judge if this is a fatal error or not. (This event requires the host to configure the adapter using
message TB640 MSG ID PMALARMMGR OP SET THRESHOLD).

- TB640_MSG_ID_ADAPTER STATES GET:

The application can regularly poll the adapter to query its states. The response to this query contains
a lot of useful information to monitor board health. The application may declare adapter failure in
case some of these states show unexpected values (board temperature, MMC disk problems, Ethernet
link states, unexpected number of resources allocated or connected for example).

- TB640 MSG_ID ADAPTER STATISTICS GET:

The application can regularly poll the adapter to query its statistics. The response to this query
contains a lot of useful information to monitor board health. The application may declare adapter
failure in case some of these statistics show unexpected values (many unexpected Ethernet packet
errors that, for example, may show an intermittent of failed network connection).

- TB640_ MSG_ID_ADAPTER _NOTIF_CPU_REPORT:

The adapter regularly reports its CPU usage to the host through this event. Using this event, the host
can monitor if the adapter is overloaded and, for example, perform load balancing across multiple
adapters.

- Watchdog:

The adapter has a built-in hardware watchdog that will automatically reboot the adapter’s software
fails to write to it. To enable this feature, the host sends a message type
TB640 MSG ID ADAPTER OP KEEP ALIVE, giving a keep alive timeout value to the adapter.
The host application must send this message again before this timeout is reached, otherwise the
adapter will automatically reboot. This feature may help detect a failed adapter, failed host
application or failed network.

13 MULTI-BLADES SYSTEM

13.1 Overview

It’s possible to interconnect up to 1024 trunks from 16x TB640 blades (64 trunks by blade) to build large system with
the TB-MB blade. The interconnection of trunks from different TB640 blades can be achieved using single TB-MB
blade. TB-MB has the capability to interconnect up to 16x TB640 blades. Each TB640 blade must have the hardware
capability (Multi-Blade Link (MBL) mezzanine) and valid license that allows usage of MBL port. The second TB-MB
blade is optional and allows building of redundant system (redundant TB-MB blades). Each MBL port on TB640 blade
has two links (link A and link B). Only one link is active by port. These links allow connection of TB640 blade to
redundant TB-MB blades. Differently from TB640 blade, each MBL port of a TB-MB blade has a single link. See
following Figure 70 for details:

Page 188

Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

TB-MB (active)

Port O: Link A Port 1: Link A Port 2: Link A Port 15: Link A
Port 0: Link A Port 0: Link A Port 0: Link A Port 0: Link A
TB640 TB640 TB640 TB640
A B C P
" Port 0: Link B " Port 0: Link B " Port 0: Link B ? Port 0: Link B
i’ Port 0: Link A ‘ Port 1: Link A i Port 2: Link A i Port 15: Link A

Figure 70: Multi-Blades system scheme with redundant TB-MB option.

The links that interconnect TB640 blades with the upper TB-MB in Figure 70 are connecting an active TB-MB to
TB640 blades. Therefore, they are active links. The links that interconnect TB640 blades with the lower TB-MB in
Figure 70 are connecting a standby TB-MB to TB640 blades. Therefore, they are inactive links.

The link switchover facility lets control traffic from the active TB-MB to the standby one. To get full TB-MB
redundancy, host application is responsible to synchronize the standby TB-MB blade with the active TB-MB. By
example, the host application could synchronize the standby TB-MB with the active TB-MB constantly by doing
configuration request on both TB-MB (active redundancy option) or could synchronize the standby TB-MB with the
active TB-MB only just before the switchover request (passive redundancy option). The first option minimizes the
switchover delay but it is more complex to implement then the second one.

Each link physically corresponds to two cables connection from a MBL port to an others one. The first cable of a link
is for clock and frame signal and the second one for data/voice signal. Losing any one of the cable will result in getting
link alarms.

TB640 blades redundancy can be achieve using the N+1 scheme and the TelcoBridges N+1 backplane.

The MBL management API is the same for TB640 and TB-MB blade types.

13.2 Blades synchronization

The host application must set clock configuration of all blades individually. The host application should start with
TB640 blades clock configuration first then terminate with TB-MB blade.

The TB640 clock configuration should be set to retrieve clock from trunk, CTBus, local oscillator... except MBL port.
All system blades must use the system clocking mode and let TB-MB select the best clock reference available
according to the clock configuration of all system blades. If TB640 clock reference is trunk then TB-MB may select
this blade as system clock reference only if trunk is active. Trunk can be active or in maintenance mode. Refer to trunk
API messages (TB640 MSG ID TRUNK ACTIVE/TB640 MSG ID TRUNK MAINTENANCE) for details
concerning trunk states modification. Refer to MBL API messages (TB640_MSG ID MBL STATES GET) for

Copyright © 2002-2008 by TelcoBridges inc. Page 189

TB640 User's guide CONFIDENTIAL 9000-00002-2H

details concerning how to check if clock coming from TB640 is valid and can become the system blades clock
reference (check "fMasterClockReady" parameter of TB640 MBL REMOTE INFO structure of
TB640 MBL LINK STATES structure.

The TB-MB will select clock reference from TB640 blades via MBL ports, its own BITS port or its own local
oscillator depending on the TB-MB clock configuration. The TB-MB will automatically synchronize all system blades
to unique clock reference. When all system blades are synchronized, one blade is the clock reference (master of clock
reference) and all other blades of the system are retrieving clock from that blade (slave on clock reference) via MBL
ports. When the selected clock reference gets invalid, the TB-MB automatically selects a new clock reference matching
as much as possible the clock configuration. The TB-MB will stay to the selected clock reference as long as the current
clock reference is valid. The host application can force clock selection by resetting TB-MB clock configuration.

Blades that allow MBL system clocking mode are dynamically changing clock reference according to TB-MB clock
selection and will always get synchronized to all system blades. Blades that do not allow MBL system clocking mode
may need host intervention to synchronize to all system blades after TB-MB clock selection. The following Figure 71
(Clock sources of the system blades) shows the different clock sources of the system blades.

TB640
trunk 0-63 MBL port
<
CT8A
—P
CT8B LocalRef1
Local clock
NETREF1 references Falback MBL port
NETREF2 LocalRef2 TB-MB
—p
local osc MBL port Q
MBL port 1|
LocalRef1
TB640 MBL port 15 g
p Local clock Fallback
trunk 0-63 LocalRef1 BITS port 0 references || ocalRef2
> -) >
CT8A MBL port BITS port 1
Fallback —P
CT8B LocalRef2 local osc
NETREF1 Local clock >
references
NETREF2
local osc MBL port
<

Figure 71: Clock sources of the system blades

13.2.1 System clocking mode

The system clocking mode should be enabled on all blades of the system except for some particular and unusual
applications otherwise clock selection mechanism will not work to its full capability and host application will have to
reconfigure clock setting on some TB640 blades when losing the primary clock reference. The system clocking mode
allow TB640 to change its own clock configuration dynamically (inhibit clock configuration) to retrieve clock
reference from TB-MB blade (from MBL port) when ever it is required. Therefore, the system clocking mode makes
all TB640 blades available to become the system clock reference and makes all TB640 blades changing clock reference

Page 190 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

automatically when system clock reference changes. If system clocking mode is enabled on TB-MB side only (not
enabled on TB640 side), the TB-MB will behave like there is no system clocking mode. If system clocking mode is
enabled on TB640 side only (not enabled on TB-MB side), the TB640 will behave like there is no system clocking
mode. The system clocking mode must be enabled on both sides (TB-MB and TB640) of the link to operate normally.

13.2.2 Clock selection mechanism

The TB-MB will select clock reference that is of the same type as the primary clock reference first then select clock
reference that is of the same type as the secondary clock reference secondly. If both are of the same type then the TB-
MB will select the primary clock reference first then the secondary clock reference secondly. If both are of the same
type but none is valid then the TB-MB will select the first available clock reference that is available of the same type as
the primary and secondary clock reference. Following Figure 72 shows clock selection mechanism flowchart. The
behavior of the clock selection mechanism depends also on system clocking mode setting of all blades of the system.
Refer to following clock selection scenarios and section 13.2.1 (System clocking mode) for details concerning clock
selection behavior and system clocking mode setting.

s current local re YES

valid

NO
s primary local re
valid?
NO
v

Scan all clock refs same
type as primary local ref

Switch current clock ref to
primary local ref

I
DONE

YES
Found valid ref?
NO
secondary local re
valid?
NO
h 4

Scan all clock refs same
type as secondary local ref]

Switch current clock ref to

—_—»
YES secondary clock ref

S secondar’
same type as primary
and valid?

Switch current clock ref to
NO ——» valid ref same type as
primary local ref

Switch current clock ref to
secondary local ref

\
DONE

Found valid ref?
NO
h 4

Switch current clock ref to
local oscillator

Switch current clock ref to
valid ref same type as
secondary local ref

Copyright © 2002-2008 by TelcoBridges inc. Page 191

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Figure 72: Clock selection mechanism with Multi-Blades system

Scenario #1 — MBL port as primary and secondary clock references on TB-MB (using system clocking mode on all
system blades)

If primary clock reference fails on TB-MB then TB-MB switches to secondary clock reference and all TB640 clock
configurations are modified to retrieve their clock reference from TB-MB except for the TB640 blade where secondary
clock reference comes from. If secondary clock reference fails on TB-MB then TB-MB switches to first valid clock
reference of the same type as the primary and secondary clock reference and all TB640 clock configurations are
modified to retrieve their clock reference from the TB-MB except for the TB640 blade that clock reference comes
from. If no valid clock reference of the same type as the primary and secondary clock reference is available on TB-MB
then TB-MB switches to its local oscillator and all TB640 clock configurations are modified to retrieve their clock
reference from the TB-MB without exception. As soon as clock reference of the same type as the primary and
secondary clock reference becomes available, the TB-MB switches back the system clock reference to this source and
all TB640 clock configurations are modified to retrieve their clock reference from TB-MB except for the TB640 blade
that clock reference comes from. The TB-MB will not switch from secondary to primary clock reference when the
current clock reference is secondary and the primary clock reference becomes available.

Scenario #2 — BITS port as primary and secondary clock references on TB-MB (using system clocking mode on all
system blades)

If primary clock reference fails on TB-MB then TB-MB switches to secondary clock reference. If the secondary clock
reference fails on TB-MB then TB-MB switches to first valid clock reference of the same type as the primary and
secondary clock reference. If no valid clock reference of the same type as the primary and secondary clock reference is
available on TB-MB then TB-MB switches to its local oscillator. As soon as clock reference of the same type as the
primary and secondary clock reference becomes available, the TB-MB switches back the system clock reference to this
source. The TB-MB will not switch from secondary to primary clock reference when the current clock reference is
secondary and the primary clock reference becomes available.

Scenario #3 — BITS port as primary and MBL port as secondary clock references on TB-MB (using system clocking
mode)

If the primary clock reference fails on TB-MB then TB-MB switches to first valid clock reference of the same type as
the primary clock reference. If no clock reference of the same type as the primary clock reference is available on TB-
MB then TB-MB switches to secondary clock reference and all TB640 clock configurations are modified to retrieve
their clock reference from TB-MB except for the TB640 blade where secondary clock reference comes from. If
secondary clock reference fails on TB-MB then TB-MB switches to first valid clock reference of the same type as the
secondary clock reference and all TB640 clock configurations are modified to retrieve their clock reference from the
TB-MB except for the TB640 blade that clock reference comes from. If no valid clock reference of the same type as the
secondary clock reference is available on TB-MB then TB-MB switches to its local oscillator and all TB640 clock
configurations are modified to retrieve their clock reference from the TB-MB without exception. As soon as clock
reference of the same type as the primary or secondary clock reference becomes available, the TB-MB switches back
the system clock reference to this source and all TB640 clock configurations are modified to retrieve their clock
reference from TB-MB except for the TB640 blade that clock reference comes from. The TB-MB will not switch from
secondary to primary clock reference when the current clock reference is secondary and the primary clock reference
becomes available.

13.3 Ports management

Allocation of MBL port is required before being able to allocate MBL port resources and being able to connect MBL
port resources to trunk channels. Configuration of MBL ports is done when allocating the ports. It is possible to
retrieve the currently allocated ports and the current port configurations when ever application needs it. The port can be
freed as soon as there is no more port resources currently allocated for this port.

Page 192 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

13.4 Resources management

Allocation of MBL port resource is required before being able to connect MBL port stream/timeslot to another resource
of the system. It is possible to retrieve the currently allocated MBL port resources of a previously allocated MBL port
when ever application needs it. The MBL port resource can be freed as soon as there is no more connection using the
MBL port resource.

Refer to section 6.1.5 for more details about MBL port resources.

13.5 States and statistics information

It is possible to retrieve the current link states and statistics information of MBL port when ever application needs it. It
is not required to allocate MBL port to retrieve the current link states and statistics information of MBL port. The states
information contains the current link alarms, the currently active link and remote link information to detect adapter
interconnections. The statistic counters reset after every read request.

13.6 Alarms and indications

MBL port status changes are notified to host application that has previously allocated the MBL port. MBL port status
change could be a link alarms or a link change indications. The link alarm is sent to host application when the error
condition raises and falls.

13.7 Redundancy facility

The TB640 port has the capability to switch between link A and B. When link switchover occurs on link A, the link A
becomes the active link and link B becomes the inactive link. When link switchover occurs on link B, the link B
becomes the active link and link A becomes the inactive link. The link switchover operation could be done manually or
automatically.

Manual link switchover:

The link switchover request can be sent to TB640 or TB-MB but link switchover always occurs on the TB640 side.
This mean that the link switchover request message can be sent to TB-MB adapter to remotely switch TB640 active
link. A single link switchover request is needed to switch all the links of all ports of all the TB640 blades of a system.
Just send a single request to any blade of the system to switch active link of all TB640 ports. This single request allows
complete link switchover using single request message.

Automatic link switchover:

The automatic link switchover behaves like the manual link switchover except that no request message is required to
trig the operation. The automatic link switchover occurs automatically when a currently active link is getting major link
alarms (clock error, frame error or communication frame error). It is possible to propagate the link switchover that
occurs on a TB640 blade to all the TB640 blades of the system and make all TB640 blades switching their active link
automatically.

13.8 Port LED status

The first LED of TB640 port gives link A status information. The second LED of TB640 port gives link B status
information. The first LED of TB-MB port gives link A status information. The second LED of TB-MB port gives
clock source selection information. See following description:

Link status information (first and second LEDs of TB640 and first LED of TB-MB):

Green LED: There is no link alarm. Link is up.

Yellow LED: There is at least a minor link alarm. Link is down.

Red LED: There is at least a major link alarms. Link is down.

Blinking LED: Currently active port (see section 13.7 Redundancy facility)

Copyright © 2002-2008 by TelcoBridges inc. Page 193

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Clock source selection information (second LED of TB-MB):

Blank LED: This port is not a valid master clock source.
Green LED: This port is a valid master clock source but not currently driving clock source.
Blinking green LED: This port is currently driving a valid clock source.

Page 194 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

14 SNMP

14.1 Overview

The SNMP (Simple Network Management Protocol) was created to manage devices attached to the
network. SNMP is based on the manager /agent model consisting of a manager, an agent, a
database of management information, managed objects and the network protocol.

The manager and agent use Management Information Base (MIB) and a relatively small set of
commands to exchange information. The MIB is organized in a tree structure. Each node in tree is
assigned a unique dot separated sequence of integers called OID(Object Identifier).

SNMP uses five basic messages (GET, GET-NEXT,GET-RESPONSE,SET and TRAP) to
communicate between the Management Station and the agent. The GET and GET-NEXT messages
are used by the Management station to request information for a specific variable. The GET-
RESPONSE message is sent by the agent in response to GET/GET-NEXT request. The GET-
RESPONSE may contain the values of the all variables in the GET/GET-NEXT requests or an
error if the agent fails to process at least one variable in the request message.

The SET message, in the other hand, is used by Management station to request a change be made to
the value of a specific variable. The TRAP message allows the agent to spontaneously inform the
manager of an important event.

14.2 SNMP Limitation

In this section we present the limitation of our current implementation of the SNMP protocol. The
only version supported by our implementation is the SNMP version 1. The communities public,
telcobridges can be used to query (GET, GET-NEXT) variables and the community private is used
to request change (SET) of a specific variable

14.3 SNMP Messages

The messages GET and GET-NEXT are fully supported. The message SET is only used to change
the trunks’ loopback status. In other words, even if some variables are declared with read-write
access, all requests to change the values of these variables cause an error to be returned to the
Management station. The only exception is the trunk’s loopback variable.

Finally, the message TRAP is not supported and it will not be generated by the agent.

Copyright © 2002-2008 by TelcoBridges inc. Page 195

TB640 User's guide CONFIDENTIAL 9000-00002-2H

14.4 Supported MIBs

1441 RFC 1213 MIB Il

Here is a list of the limitation or the unsupported feature in this MIB:
e The ipRouteTable is not implemented
The EGP group is not implemented
The atTable is not implemented.
TCP,UDP and ICMP statistics are the sum of statistics from the two CPUs
Only the udpTable and TcpConnTable of CPU 0 will be shown

14.4.2 RFC 2959 Real-Time Transport Protocol Management Information
Base

The following tables are supported:
e rtpSessionTable
e rtpSenderTable
e rtpRcvrTable
The agents returns the value 9999 for the unsupported values

14.4.3 RFC 2495 DS1, E1, DS2 and E2 Interfaces

The trunks will be shown in the interface table independently of their configurations/allocations. In
addition, the agent returns the 9999 for unsupported fields

The following tables are supported:
Dsx1ConfigTable
Dsx1CurrentTable
Dsx1IntervalTable
Dsx1TotalTable

It should be noted here that the trunk’s loopback setting is supported in dsx1ConfigTable

14.4.4 RFC 2496 - Definitions of Managed Object for the DS3/E3 Interface
Type

The DS3 line interfaces will be shown in the interface table independently of their

configurations/allocations. In addition, the agent returns the 9999 for unsupported fields

The following tables are supported:
Dsx3ConfigTable
Dsx3CurrentTable
Dsx3IntervalTable
Dsx3TotalTable

Page 196 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

14.4.5 Telcobridges Private MIB (TB-MIB)

The private MIB provides information on the software and hardware components installed on the
adapter.

The TB-MIB file is provided with the package under the directory th/th640/doc/mibs.

Please refer to TB-MIB file for more information about a specific object.

The following paragraph provides roadmap of TB-MIB files.
1. Direcotry group: contains the module table which have an entry for each supported
module
2. Common Group : contains the following objects
a. tbHwCommon:
1. Serial Number, Slot ID, Shelf ID and adapter’s part number
ii. tbHwVersinTable :
iii. tbHwTempTable(Device Temperature)
b. tbSwCommon
1. tbSwFeatureTable
ii. tbVersionTable
3. Specific Group : contains product’s specific objects
4. Experimental Group : used for experimental purpose

At the moment of writing this document, the Specific and Experimental groups are empty

14.5 Browsing MIBs

The tools used during testing are the command lines tools provided by net-snmp. These tools can
downloaded freely from http://net-snmp.sourceforge.net. In order to see the objects’ names when
using these tools, the environnement variable MIBDIRS should be set to the location where the
MIB files were installed.

All the tools accept the following options:

-v : version. In our case only version one is supported
-m : modules list. Use ALL to load all modules
-C : community’s name. Use public for read and private for write

Please refer to the tools for more information about theirs usage.

14.5.1 Get a single object

The command snmpget can be used to get one or more objects in the same request. In this example
we send a request command to read system’s description and system up time:

>snmpget —v 1 —c public —m ALL 192.168.100.100 sysDescr.0 sysUpTime.0
Your can replace the object’s name by theirs OIDs

Copyright © 2002-2008 by TelcoBridges inc. Page 197

http://net-snmp.sourceforge.net/

TB640 User's guide CONFIDENTIAL 9000-00002-2H

14.5.2 Get the next object

The command snmpgetnext can be used to get the next lexicographically object in the tree
following the specified object. In this example we send a request command to read the next object
after the system’s description.

>snmpgetnext —v 1 —c public —m ALL 192.168.100.100 sysObjectID.0
SNMPv2-MIB::sysObjectID.0 = OID: TB-MIB::Specific.1.252

14.5.3 Get a specific table

The command snmptable can be used to get a table and display it in a tabular form. The following
example reads the features tables from the Telcobridges private MIB.

>snmptable —v 1 —c public —m ALL 192.168.100.100 tbFeaturesTable

14.5.4 Get a tree branch

In the following example, the command snmpwalk 1s used to display a branch. When using this
command, the tables are displayed by columns rather than by lines.

>snmptable —v 1 —c public —m ALL 192.168.100.100 tbFeaturesTable

Page 198 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

15 REVISION HISTORY

Changes in revision 9000-00002-1X

v" New API message (TB640 MSG ID CAS CMD ACCEPT INCOMING CALL) was added in
CAS call scenarios for R1 variants (except Taiwan MDR1) in non-DDI mode only. This
change affects sections 8.3.5.1.1 and 8.3.5.1.3.

v RI variants (except Taiwan MDR1) in DDI mode now disconnect and free tone detector
and generator resource right before sending the message
TB640 MSG ID CAS NOTIF CONNECT INDICATION or
TB640 MSG _ID_CAS NOTIF_CALL PRESENT INDICATION. This change affects sections
8.3.5.1.2 and 8.3.5.1.4.

Changes in revision 9000-00002-1Y

v Added the description of pure-TDM resource (section 6.2.2.4.1.2) in VP Groupl1 to support

call progress tone detection feature.

v" Modified Figure 43 and added Figure 44 to better distinguish between functions of a pure-
TDM resource and functions of a TDM resource part of a TDM/Stream group
Added a section about call progress tone detection (section 6.2.2.5.2)
Added a warning about Payload type value configuration (section 6.2.2.5.5)
Added a warning about adaptative jitter-buffer and modem/fax passthrough (section
6.2.2.5.7)

ANENEN

Changes in revision 9000-00002-17Z
v Updated Table 12 and Table 13 about Japan INS isdn variant

Changes in revision 9000-00002-2A

v Updated sections 6.2.2.5.5 and 6.2.2.5.6 on how to configure VP Groupl payload types and
to decipher SIP SDP information.

Changes in revision 9000-00002-2B
v" Fixed typos and bad indexes after review of section 6.2.2.5.6.

Changes in revision 9000-00002-2C
v Changed section 5 to include information about SONET and SDH line interfaces/services
for the TB640-STM1 blade.
v New sub-section 5.3 describing SONET and SDH

Changes in revision 9000-00002-2D
v Changed Table 10 and Table 11 to use the enum TBX _MEDIA_TYPE instead of
TBX STREAM PACKET TYPE since the later is now obsolete (although still supported
to ease porting older applications to newer releases)
v Change ‘SIP to VPGrpl’ code samples from section 6.2.2.5.6 to use TBX MEDIA TYPE
instead of TBX STREAM_PACKET TYPE

Copyright © 2002-2008 by TelcoBridges inc. Page 199

TB640 User's guide CONFIDENTIAL 9000-00002-2H

Changes in revision 9000-00002-2E

v Added STM-1 clock configuration information in DS3 clock configuration section.
v Renamed section “DS3 clock configuration” to “DS3 and STM-1 clock configuration”

Changes in revision 9000-00002-2F
v" Modified Table 8 to remove G.726 5Smsec

Changes in revision 9000-00002-2G
v" Added a warning about invalid T.38 Fax resource pre-allocation methodology in sections
6.2.1.5,6.2.1.7and 6.2.2.5.9

Changes in revision 9000-00002-2H

v" Removed references to obsoleted defines in section 6.2.2.5.5 and 6.2.2.5.6 when converting
from SIP SDP to VpGrpl parameters.

Page 200 Copyright © 2002-2008 by TelcoBridges inc.

9000-00002-2H CONFIDENTIAL TB640 User's guide

End of the document

Copyright © 2002-2008 by TelcoBridges inc. Page 201

	INTRODUCTION
	OVERVIEW
	MESSAGES
	Asynchronous messaging
	Why asynchronous messaging?
	Zero loss of responses and events

	Synchronous messaging
	Dangers of synchronous messaging

	Filters
	Explicit filters
	Implicit filters

	Code example #1: Create an explicit message filter to retrieve event messages from all accessible adapters
	Code example #2: Create an explicit message filter to retrieve response messages from a specific adapter
	Code example #3: Send request message to attach specific adapter (explicit filtering method)
	Code example #3: Send request message to attach specific adapter (implicit filtering method)
	Code example #4: Receive response message

	HOST LIBRARIES
	Linking with the HostLibs
	TBX HostLib Debug API

	INITIALIZATION
	Code example #5: Initialize the library and attach specific adapter using the implicit filter
	Code example #6: Un-initialize the library and detach specific adapter using the implicit filter

	LINE INTERFACES / SERVICES
	Line Interfaces
	Allocate a Line Interface
	Free a Line interface

	Line Services
	Allocate a line service
	Free a line service

	SONET and SDH
	Mapping of payload within an SDH or SONET framing
	Automatic protection switching (APS)
	APS configuration parameters
	How to configure (or not) the APS
	Causes of a protection switching and associated alarms

	RESOURCES
	Channel Resources
	Trunk resources/Line Service Resources
	Code example #7: Allocate trunk resource using the implicit filter
	Code example #8: Free trunk resource using the implicit filter

	CTBUS resources
	Stream resources
	Stream redundancy
	Redundancy mode ”none”
	Redundancy duplicate mode
	Redundancy switched mode

	Transcoding resources
	Multi-Blade Link resources

	Voice processing
	Voice processing resources
	TDM VP resource
	TDM Flowthru VP resource
	TDM FSK VP resource
	TDM Echo Near/Far VP resource
	TDM T.38 VP resource
	Stream VP resource
	Stream T.38 VP resource

	Voice processing groups
	Voice processing group0 (IVR) capabilities
	VP group0 resource usage examples
	One TDM VP resource in a VP group
	One Stream VP resource in a VP group
	Two TDM VP resources in a VP group
	Two Stream VP resources in a VP group
	One TDM and one Stream VP resource in a VP group
	More than two TDM and/or Stream VP resources in a VP group

	VP group0 functions
	Tone Detection, Suppression and Generation
	Tone detection and suppression
	CAS tone detection
	Tone generation

	Automatic Gain Control (AGC)
	Voice Activity Detection (VAD)
	TDM to Stream switching (Record)
	Stream to TDM switching (Play)
	Conferencing (12 channels or less)
	Bridged Conferencing (12 channels or more)
	Fsk
	TelcoBridges Fsk engine
	Acting as FSK CPE device
	Acting as FSK server
	Supported Fsk Frame format
	Reception flow
	Five Adsi messages reception in a single Burst (MMB)

	Transmission flow
	Three Adsi messages transmission in a single Burst (MMB)

	Transmission and reception flow
	Two-Way Fsk transfer

	Fsk API
	Opening Fsk resource in V.23 reception mode
	Opening IVR resource with B202 Fsk Auto-Reception
	Sending Fsk message in a single message burst (SMB)

	VP group0 Applications
	IVR
	Voice recording with music
	Recording a conference
	Background Music application

	Voice processing group1 (VoIp) capabilities
	VP group1 resource usage examples
	One VP TDM resource (flowthru) in a VP group
	One VP TDM resource (pure-TDM) in a VP group
	One VP TDM and one Stream resource in a VP group
	One VP TDM T.38 and one Stream T.38 resource in a VP group
	Two VP TDM echo resources in a VP group

	VP group1 functions
	Tone detection, suppression, generation and relay
	Call progress tone detection
	Call progress basics
	Custom call progress tones

	Echo cancellation
	Codecs
	Allocation algorithm 1 (mixed codecs)
	Coding your application using algorithm 1 (mixed mode):

	Allocation algorithm 2 (fixed codecs)
	Coding your application using algorithm 2 (fixed mode):

	Payload type values
	Mapping SIP SDP to VP Group1 resource parameters and payload types
	Jitter buffers
	VAD
	T.38 Fax relay
	RTCP

	VP group1 Applications
	Tdm to VoIp connections
	VoIp to VoIp transcoding
	Fax relay over VoIp network (RFC2833)
	TDM Echo cancellation

	CONNECTIONS
	Path description
	Code example #6: Connect two full-duplex resources using the implicit filter

	SIGNALING
	Overview
	Architecture
	CCS
	Q.SIG

	Q.931 ISDN Signaling
	Trunk configuration
	D-Channel logical status
	Bring up sequence
	Call handle and user contexts
	API request/response vs ISDN messages
	Restart Procedure
	B-Channel status
	Asynchronous issues
	Original vs extended ISDN API message
	Extended ISDN API message
	How to fill IE buffer in ISDN request
	Native format of an IE
	Working with different codesets
	Helping macros
	How to fill new information elements

	How to parse IE buffer in ISDN notification
	Helping macros
	How to parse new information elements

	Original ISDN API message
	How to fill or parse Information Elements (IE)
	Bearer Capabilities
	Outband called address
	Outband called subaddress
	Outband calling address
	Outband calling subaddress
	Cause
	High Layer Compatibility
	Keypad Facility
	Layer Compatibility
	Progress Indicator
	User to User
	User (additionnal IE)
	Redirecting

	PRI ISDN Call scenarios (Stack and TB640 APIs)
	Successful call placed from network-side
	Successful call placed from network-side (overlap mode)
	Unsuccessful Call placed from Network-side
	Unsuccessful Call placed from Network-side (app. Timeout)
	Refused Call placed from Network-side
	Discontinued Call placed from Network-side
	Call placed from Network-side, discontinued by User-side
	Call collision (same B-channel)
	Successful Call placed from User-side
	Successful Call placed from User-side (overlap mode)
	Unsuccessful Call placed from User-side
	Refused Call placed from User-side
	Discontinued Call placed from User-side
	Call placed from User-side, discontinued by Network-side
	Disconnect collision (scenario starts in active state)

	PRI ISDN Call collision scenarios (TB640 and user application)
	Connect collision (ISDN call arrived first)
	Connect collision (User application call arrived first)
	Connect collision (both call received at the same time in the stack)
	Disconnect collision (stack disconnect first)

	CAS Signaling
	Trunk configuration
	Physical link status
	Call handle and user contexts
	CAS Basic knowledge
	R1 CAS Basics
	R2 CAS Basics
	R2 China digits
	R2 Korea digits
	R2 Singapore digits
	R2 Bangladesh digits
	R2 Generic digits

	PRI CAS Call scenarios (Stack and TB640 APIs)
	R1 CAS (except Taiwan modified R1)
	Successful call placed from network-side (non Direct-Inward-Dialing)
	Successful call placed from network-side (Direct-Inward-Dialing)
	Successful call placed from user-side (non Direct-Inward-Dialing)
	Successful call placed from user-side (Direct-Inward-Dialing)
	Call refused to network/user-side (timeslot busy or physical line down)
	Call stopped to network/user-side because of protocol error
	Call refused by user-side (non Direct-Inward-Dialing)
	Call refused by user-side (Direct-Inward-Dialing)
	Call refused by network-side (non Direct-Inward-Dialing)
	Call refused by network-side (Direct-Inward-Dialing)
	Call cleared by network
	Call cleared by/user-side
	Disconnect collision (both sides disconnect at the same time)
	Disconnect collision (disconnect almost at the same time)

	Taiwan modified R1
	Successful call placed from forward-side
	Call refused to forward-side (timeslot busy or physical line down)
	Call stopped to forward-side because of protocol error
	Call refused by backward-side
	Call cleared by forward -side
	Call cleared by backward-side
	Disconnect collision (both sides disconnect at the same time)
	Disconnect collision (disconnect almost at the same time)

	R2 CAS
	Successful call placed from forward-side
	Call refused to forward-side (timeslot busy or physical line down)
	Call stopped to forward-side because of protocol error/network congestions or busy condition
	Call refused by backward-side
	Call cleared by forward-side
	Call cleared by backward-side
	Disconnect collision (both sides disconnect at the same time)
	Disconnect collision (disconnect almost at the same time)

	CLOCK CONFIGURATIONS
	Clocking description
	Primary, Secondary Master and Slave
	Primary Master and Standalone

	DS3 AND STM-1 CLOCK CONFIGURATIONS
	ADAPTER MANAGEMENT
	Resetting the adapter

	FAULT TOLERANCE AND HIGH AVAILABILITY
	Network redundancy
	NP1 facility protection
	Overview
	Cable Management
	Power Sharing
	Slot ID and connector ID
	Alarms

	Chassis Management
	Takeover operation
	Release operation
	Traffic Status
	Primary Presence
	NP1IO LED status

	Fault detection
	Events to monitor for fault detection

	MULTI-BLADES SYSTEM
	Overview
	Blades synchronization
	System clocking mode
	Clock selection mechanism

	Ports management
	Resources management
	States and statistics information
	Alarms and indications
	Redundancy facility
	Port LED status

	SNMP
	Overview
	SNMP Limitation
	SNMP Messages
	Supported MIBs
	RFC 1213 MIB II
	RFC 2959 Real-Time Transport Protocol Management Information Base
	RFC 2495 DS1, E1, DS2 and E2 Interfaces
	RFC 2496 - Definitions of Managed Object for the DS3/E3 Interface Type
	Telcobridges Private MIB (TB-MIB)

	Browsing MIBs
	Get a single object
	Get the next object
	Get a specific table
	Get a tree branch

	REVISION HISTORY

